Non-isomorphic conference designs
pieter.eendebak@gmail.com
On this page we present numbers of isomorphism classes for conference designs with a specified number of runs (or rows) and factors (or columns). For all the cases a set of representatives for the isomorphism classes is available. The algorithm used to generate the results is described in A Classification Criterion for Definitive Screening Designs and Enumeration and Classification of Definitive Screening Designs, in preparation.
Single conference designs
Conference designs are matrixes of size 2m x k with values 0, +1 or -1, where m ≥ 2 and k ≤ m. Each column contains exactly one zero and each row conains at most one zero. The columns are orthogonal to each other. Square single conference designs are conference matrices.
A definitive screening design can be constructed by appending a conference design with both its fold-over and a row of zeroes.
Number of rows | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
k | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | 32 | 34 | 36 | 38 | 40 |
2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
4 | 1 | 1 | 2 | 3 | 3 | 5 | 4 | 7 | 5 | 9 | 6 | 11 | 7 | 13 | 8 | 15 | 9 | 17 | 10 |
5 | 1 | 1 | 2 | 2 | 5 | 7 | 13 | 15 | 28 | 30 | 59 | 55 | 101 | 97 | 176 | 158 | 277 | 252 | |
6 | 1 | 1 | 2 | 5 | 12 | 30 | 92 | 219 | 637 | 1588 | 4135 | ≥ 209 | ≥ 217 | ≥ 2628 | ≥ 256 | ? | ? | ? | |
7 | 1 | 1 | 2 | 7 | 48 | 201 | 1781 | 10962 | 87929 | ≥ 660 | ≥ 897 | ≥ 8682 | ? | ≥ 31726 | ? | ? | ? | ||
8 | 1 | 1 | 2 | 7 | 77 | 251 | 5292 | 70859 | 1839474 | ≥ 1585 | ≥ 6769 | ≥ 340714 | ? | ? | ? | ? | ? | ||
9 | 1 | 1 | 3 | 42 | 47 | 3640 | 78966 | 8259167 | ≥ 6364 | ≥ 48980 | ≥ 29524 | ? | ? | ? | ? | ? | |||
10 | 1 | 1 | 3 | 37 | 26 | 2342 | 16865 | 8667156 | ≥ 5790 | ≥ 107503 | ≥ 13573 | ? | ? | ? | ? | ? | |||
11 | 1 | 1 | 17 | 10 | 1589 | 101 | 4124471 | ≥ 1982 | ≥ 65517 | ≥ 4827 | ? | ? | ? | ? | ? | ||||
12 | 1 | 1 | 13 | 10 | 1172 | 21 | 2397144 | ≥ 1307 | ≥ 16184 | ≥ 906 | ? | ? | ? | ? | ? | ||||
13 | 1 | 3 | 4 | 689 | 0 | 1806230 | ≥ 571 | ≥ 2633 | ≥ 114 | ? | ? | ? | ? | ? | |||||
14 | 1 | 3 | 3 | 366 | 0 | 1353790 | ≥ 203 | ≥ 1088 | ≥ 69 | ? | ? | ? | ? | ? | |||||
15 | 1 | 1 | 142 | 0 | 888475 | ≥ 78 | ≥ 675 | ≥ 30 | ? | ? | ? | ? | ? | ||||||
16 | 1 | 1 | 57 | 0 | 499614 | ≥ 64 | ≥ 455 | ≥ 28 | ? | ? | ? | ? | ? | ||||||
17 | 1 | 13 | 0 | 234006 | ≥ 63 | ≥ 295 | ? | ? | ? | ? | ? | ? | |||||||
18 | 1 | 5 | 0 | 91773 | ≥ 61 | ≥ 221 | ? | ? | ? | ? | ? | ? | |||||||
19 | 2 | 0 | 28730 | ≥ 61 | ≥ 168 | ? | ? | ? | ? | ? | ? | ||||||||
20 | 2 | 0 | 7417 | ≥ 55 | ≥ 132 | ? | ? | ? | ? | ? | ? | ||||||||
21 | 0 | 1377 | ≥ 55 | ≥ 92 | ? | ? | ? | ? | ? | ? | |||||||||
22 | 0 | 232 | ≥ 54 | ≥ 76 | ? | ? | ? | ? | ? | ? | |||||||||
23 | 19 | ≥ 52 | ≥ 63 | ? | ? | ? | ? | ? | ? | ||||||||||
24 | 9 | ≥ 31 | ≥ 57 | ? | ? | ? | ? | ? | ? | ||||||||||
25 | ≥ 8 | ≥ 50 | ? | ? | ? | ? | ? | ? | |||||||||||
26 | 4 | ≥ 48 | ? | ? | ? | ? | ? | ? | |||||||||||
27 | ≥ 44 | ? | ? | ? | ? | ? | ? | ||||||||||||
28 | 41 | ? | ? | ? | ? | ? | ? | ||||||||||||
29 | ? | ? | ? | ? | ? | ? | |||||||||||||
30 | ? | ? | ? | ? | ? | ? | |||||||||||||
31 | ? | ? | ? | ? | ? |
Double conference designs (DCDs)
Double conference designs are matrices of size 4m x k with values 0, +1 or -1, where m ≥2 and k ≤ 2m. Each column contains exactly two zeros and each row contains at most one zero. The columns are orthogonal to each other.
DCDs with level balance and orthogonal interaction columns.
In double conference designs with level balance and orthogonal interaction columns, the elements of each column sums to zero. In addition, for any set of three columns, the vector formed by the element-wise product of the columns has elements that sum to zero too. A definitive screening design can be constructed by appending a double conference design with a row of zeroes.
Number of rows | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
k | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 | 52 | 56 | 60 | 64 | 68 | 72 | 76 | 80 |
2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
3 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
4 | 0 | 1 | 1 | 2 | 3 | 3 | 5 | 4 | 7 | 5 | 9 | 6 | 11 | 7 | 13 | 8 | 15 | ≥ 9 | ≥ 17 | 10 |
5 | 0 | 1 | 1 | 2 | 2 | 6 | 8 | 15 | 17 | 34 | 38 | 74 | 72 | 135 | 135 | ≥ 250 | ≥ 230 | ≥ 412 | 387 | |
6 | 0 | 1 | 1 | 2 | 5 | 12 | 30 | 93 | 220 | 664 | 1691 | 4621 | 11345 | ≥ 29165 | ≥ 70480 | ≥ 170345 | ≥ 399563 | ≥ 769435 | ≥ 1220834 | |
7 | 0 | 0 | 1 | 1 | 2 | 7 | 48 | 201 | 1781 | 11007 | 88691 | ≥ 488248 | ≥ 2763828 | ≥ 2159796 | ≥ 4503006 | ≥ 1925678 | ≥ 3143998 | ≥ 1331877 | ≥ 1697269 | |
8 | 0 | 0 | 1 | 1 | 2 | 7 | 77 | 251 | 5292 | 70880 | 1840689 | ≥ 1923908 | ≥ 2030735 | ≥ 1602270 | ≥ 3238383 | ≥ 1740801 | ≥ 4073120 | ≥ 2502673 | ≥ 3971401 | |
9 | 0 | 0 | 1 | 1 | 3 | 42 | 47 | 3640 | 78970 | 8259277 | ≥ 939481 | ≥ 809137 | ≥ 682922 | ≥ 1873207 | ≥ 858485 | ≥ 4668023 | ≥ 792978 | ≥ 2860616 | ||
10 | 0 | 0 | 1 | 1 | 3 | 37 | 26 | 2342 | 16866 | 8667156 | ≥ 314593 | ≥ 251597 | ≥ 132276 | ≥ 556721 | ≥ 593656 | ≥ 1356109 | ≥ 208929 | ≥ 1912806 | ||
11 | 0 | 0 | 0 | 1 | 1 | 17 | 10 | 1589 | 101 | 4124471 | ≥ 73425 | ≥ 45044 | ≥ 44278 | ≥ 111004 | ≥ 331405 | ≥ 283393 | ≥ 37076 | ≥ 1014231 | ||
12 | 0 | 0 | 0 | 1 | 1 | 13 | 10 | 1172 | 21 | 2397144 | ≥ 43878 | ≥ 4041 | ≥ 5702 | ≥ 20534 | ≥ 89673 | ≥ 74946 | ≥ 9424 | ≥ 301830 | ||
13 | 0 | 0 | 0 | 1 | 3 | 4 | 689 | 0 | 1806230 | ≥ 9443 | ≥ 1566 | ≥ 784 | ≥ 2785 | ≥ 14544 | ≥ 16202 | ≥ 1038 | ≥ 97028 | |||
14 | 0 | 0 | 0 | 1 | 3 | 3 | 366 | 0 | 1353790 | ≥ 2723 | ≥ 977 | ≥ 100 | ≥ 409 | ≥ 2382 | ≥ 4674 | ≥ 69 | ≥ 39204 | |||
15 | 0 | 0 | 0 | 0 | 1 | 1 | 142 | 0 | 888475 | ≥ 829 | ≥ 574 | ≥ 4 | ≥ 18 | ≥ 180 | ≥ 462 | ≥ 2 | ≥ 7661 | |||
16 | 0 | 0 | 0 | 0 | 1 | 1 | 57 | 0 | 499614 | ≥ 253 | ≥ 244 | ? | ? | ? | ≥ 34 | ? | ≥ 941 | |||
17 | 0 | 0 | 0 | 0 | 1 | 13 | 0 | 234006 | ≥ 42 | ≥ 62 | ? | ? | ? | ≥ 2 | ? | ≥ 334 | ||||
18 | 0 | 0 | 0 | 0 | 1 | 5 | 0 | 91773 | ≥ 6 | ≥ 7 | ? | ? | ? | ? | ? | ≥ 83 | ||||
19 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 28730 | ? | ? | ? | ? | ? | ? | ? | ≥ 5 | ||||
20 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 7417 | ? | ? | ? | ? | ? | ? | ? | ? | ||||
21 | 0 | 0 | 0 | 0 | 0 | 0 | 1377 | ? | ? | ? | ? | ? | ? | ? | ? | |||||
22 | 0 | 0 | 0 | 0 | 0 | 0 | 232 | ? | ? | ? | ? | ? | ? | ? | ? | |||||
23 | 0 | 0 | 0 | 0 | 0 | 0 | 19 | ? | ? | ? | ? | ? | ? | ? | ? | |||||
24 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | ? | ? | ? | ? | ? | ? | ? | ? | |||||
25 | 0 | 0 | 0 | 0 | ? | ? | ? | ? | ? | ? | ? | ? | ? | |||||||
26 | 0 | 0 | 0 | 0 | ? | ? | ? | ? | ? | ? | ? | ? | ? |
DCDs with level balance
In double conference designs with level balance, the elements of each column sum to zero.
Number of rows | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
k | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 |
2 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
3 | 0 | 0 | 1 | 2 | 1 | 0 | 1 | 2 | 1 | 0 | 1 | 2 |
4 | 0 | 0 | 1 | 2 | 2 | 0 | 6 | 8 | 14 | 0 | 25 | 72 |
5 | 0 | 0 | 1 | 2 | 0 | 13 | 60 | 159 | 0 | 1866 | 16732 | |
6 | 0 | 1 | 2 | 0 | 21 | 403 | 640 | 0 | 77963 | ? | ||
7 | 0 | 0 | 0 | 12 | 1221 | 447 | 0 | ? | ? | |||
8 | 0 | 0 | 6 | 1928 | 268 | 0 | ? | ? | ||||
9 | 0 | 0 | 1858 | 89 | 0 | ? | ? | |||||
10 | 0 | 1206 | 26 | 0 | ? | ? | ||||||
11 | 577 | 0 | 0 | ? | ? | |||||||
12 | ? | 0 | 0 | ? | ? | |||||||
13 | ? | 0 | ? | ? |
DCDs with orthogonality of interaction columns
In double conference designs with orthogonal interaction columns, for any set of three columns, the vector formed by the element-wise product of the columns has elements that sum to zero.
Number of rows | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
k | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 |
2 | 2 | 7 | 10 | 14 | 17 | 21 | 24 | 28 | 31 | 35 | 38 |
3 | 1 | 5 | 10 | 14 | 19 | 22 | 31 | 31 | 38 | 39 | 50 |
4 | 0 | 1 | 1 | 6 | 4 | 3 | 3 | 21 | 10 | 6 | 6 |
5 | 0 | 0 | 1 | 1 | 0 | 1 | 11 | 4 | 0 | 6 | |
6 | 0 | 0 | 0 | 1 | 0 | 1 | 5 | 2 | 0 | 5 | |
7 | 0 | 0 | 0 | 0 | 1 | 2 | 1 | 0 | 2 | ||
8 | 0 | 0 | 0 | 0 | 1 | 2 | 1 | 0 | 2 | ||
9 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | |||
10 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | |||
11 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ||||
12 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ||||
13 | 0 | 0 | 0 | 0 | 0 | 0 |
Plain DCDs
In double conference designs with orthogonal interaction columns, for any set of three columns, the vector formed by the element-wise product of the columns has elements that sum to zero.
Number of rows | |||||||||
---|---|---|---|---|---|---|---|---|---|
k | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 |
2 | 2 | 8 | 17 | 26 | 41 | 54 | 75 | 92 | 119 |
3 | 1 | 15 | 61 | 207 | 500 | 1017 | 1893 | 3157 | 5085 |
4 | 0 | 12 | 106 | 930 | 6410 | 34333 | ? | ? | ? |
5 | 5 | 93 | 1222 | ? | ? | ? | ? | ? | |
6 | 2 | 52 | 1146 | ? | ? | ? | ? | ? | |
7 | 18 | 697 | ? | ? | ? | ? | ? | ||
8 | 4 | 267 | ? | ? | ? | ? | ? | ||
9 | 0 | 62 | ? | ? | ? | ? | ? | ||
10 | 9 | ? | ? | ? | ? | ? | |||
11 | 0 | ? | ? | ? | ? | ? | |||
12 | ? | ? | ? | ? | ? |
Weighing matrices
Plain DCDs (full isomorphism class)
For the isomorphism class level-permutatations of the rows are allowed. We also allow multiple zeros in a row. The square double conference designs of this type form a complete non-isomorphic set of weighing matrices of type W(N, N-2). The square double conference matrices are a complete non-isomorphic set of weighing matrices of type W(N, N-2).
Number of rows | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
k | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 |
2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 469 |
3 | 1 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ? |
4 | 0 | 3 | 6 | 11 | 19 | 24 | 37 | 42 | 57 | 57 | ? |
5 | 1 | 3 | 11 | 38 | 102 | 352 | ? | ? | ? | ? | |
6 | 1 | 3 | 13 | 81 | 244 | 3244 | ? | ? | ? | ? | |
7 | 1 | 8 | 61 | 37 | 8165 | ? | ? | ? | ? | ||
8 | 1 | 6 | 61 | 16 | ? | ? | ? | ? | ? | ||
9 | 1 | 27 | 5 | ? | ? | ? | ? | ? | |||
10 | 1 | 20 | 4 | ? | ? | ? | ? | ? | |||
11 | 5 | 2 | ? | ? | ? | ? | ? | ||||
12 | 5 | 2 | ? | ? | ? | ? | ? | ||||
13 | 0 | ? | ? | ? | ? | ? | |||||
14 | 0 | ? | ? | ? | ? | ? |
If you make use of these results, please cite the paper A Classification Criterion for Definitive Screening Designs.
The square conference designs are conference matrices.