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ABSTRACT
A robust and efficient method is presented for recognizing
objects in unstructured 3D point clouds acquired from pho-
tos. The method first finds the locations of target objects
using single spin image matching and then retrieves the ori-
entation and quality of the match using the iterative closest
point (ICP) algorithm. In contrast to classic use of spin
images as object descriptors, no vertex surface normals are
needed, but a global orientation of the scene is used. This
assumption allows for an efficient and robust way to detect
objects in unstructured point data. In our experiments we
show that our spin matching approach is capable of detect-
ing cars in a 3D reconstruction from photos. Moreover, the
application of the ICP algorithm afterwards allows us (1) to
fit a query model in the scene to retrieve the car’s orienta-
tion and (2) to distinguish between cars with a similar shape
and a different shape using the residual error of the fit. This
allows us to locate and recognize different types of cars.

Categories and Subject Descriptors
I.2.10 [Computing Methodologies]: Vision and Scene
Understanding—3D/stereo scene analysis; I.4.8 [Computing
Methodologies]: Image Processing and Computer Vision—
Scene Analysis
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1. INTRODUCTION
Today, a range of techniques exist to create a 3D model

from an environment. Laser scanning and visual reconstruc-
tion are examples that result in unstructured point data.
Various methods for the recognition of objects in an acquired
scene are proposed. In this context spin images proved to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
3DOR’10, October 25, 2010, Firenze, Italy.
Copyright 2010 ACM 978-1-4503-0160-2/10/10 ...$10.00.

be a powerful description to detect target objects in clut-
tered and occluded scenes [4]. Spin images are viewpoint
independent shape descriptors that are created by mapping
3D points into a 2D histogram.

One disadvantage of the classical approach is the num-
ber of spin images that need to be matched, resulting in
high computational costs. Another disadvantage is the need
for surface normals at the observed points. Usually these
surface normals are not available from the aforementioned
acquisition methods. One way to overcome this is by esti-
mating surface normals and then creating spin images only
for object locations that are selected by some cheaper shape
similarity filtering step [1]. However, estimating normals is
far from trivial and other shape similarity measures often
cannot handle partially observed models properly. Instead
of adding different measures for filtering, we make the as-
sumption that the global “up” direction of the scene and
target objects are known. This prior knowledge can then be
used to efficiently scan the scene for target objects.

Figure 1: Scene with eight cars.

We follow [3] by first using spin images to detect the lo-
cations of target objects and then to use the iterated closest
point (ICP) algorithm to retrieve the orientation. These
methods complement each other, because spin images can
be used to efficiently find objects in a larger scene indepen-
dent of the object orientation, whereas the ICP algorithm
is able to reconstruct the orientation of two equally sized
objects. In addition this combination allows the parameters
for spin image creation to be safely optimized for robust-
ness as the ICP algorithm is not only used to orient the
model, but is also used to verify the quality of the match;
if the ICP match error between fitted model and scene ob-
ject exceeds a predefined threshold, the match is discarded.



This is an advantage over using spin images for object detec-
tion alone. In choosing parameters for spin images, there is
always a trade-off between discriminative power and robust-
ness. Smaller bin sizes result in descriptions which are better
suited to match the finer object details, whereas larger bin
sizes are less sensitive to noise and thus result in more robust
detections.

The way spin images are used here is different from the
way they were introduced [4]. Usually multiple spin im-
ages are used to represent the known model. The method
proposed here uses only a single spin image that covers the
known model with the origin located on the top-most point
of the model and with a normal in the global direction (Fig-
ure 3). As mentioned before, no normal vectors per point
are considered. The “support angle” to determine whether
a point contributes to the spin image is therefore also dis-
carded. For this special case a more efficient implementation
of spin image creation is given.

Although we assume a known global direction, matching
objects does not reduce to a 2D problem by projecting the
points onto a single plane. Target objects can reside on
different heights and can be occluded when seen from an
arbitrary angle.

To demonstrate our approach we try to detect cars of dif-
ferent type in both an artificial and a real world scene. Fig-
ure 1 shows the artificial scene with two kinds of cars and
other objects such as trees. Figure 8 shows the real world
scene. For these scenes the concept of a known global “up”
direction clearly makes sense: for all cars it holds that the
roof of cars is likely to be above its wheels. Note, however,
that as a consequence, cars that appear up side down in the
scene will not be detected.

Figure 2: Two car types found in the scene. Respec-
tively: car model 1 and 2.

2. APPROACH
Using a single spin image direction reduces the number of

possible object poses significantly as only rotations around
the z-axis are considered. Thus the matching problem is
reduced from 6 dimensions (x, y, z, rx, ry, rz) to 4 dimensions
(x, y, z, rx, ry, rz). It is a realistic assumption that a global
direction is available when the observations were made under
known conditions. However, when this global direction is
not known, one can also attempt to find the ground-plane
and then to retrieve the global direction from this plane.

In the rest of this section we assume the known global di-
rection to be the vector (0, 0, 1)T , i.e. the z or“up”direction,
without loss of generality. When a different normal vector

is preferred, both the model and scene point data need to
be rotated 1

Before scanning the scene Pscene for possible occurrences
of a model Pmodel a spin image of Pmodel is to be created.
The spin image is positioned at the point in Pmodel with the
largest z-value. The size of the spin image (αmax, βmin) is
chosen such that the entire model is covered. The size of
each bin ρ of the spin image resembles the resolution of the
spin image. An example of the spin image for car model 1
is given in Figure 3.

Figure 3: Single spin image for a car.

Given the input scene Pscene and the known model Pmodel,
which are both unstructured point clouds, all locations T
and orientations R of Pmodel in Pscene are now to be found.
Algorithm 1 shows the steps which are taken to retrieve T
and R.

In step 1 of Algorithm 1 all points ~p in the observed scene
Pscene are taken as origin/pivot for the creation of a spin
image. If the scene point cloud is much denser than the
model point cloud one could use a uniform sampling of the
points as origins. An efficient implementation for creating a
single spin image at a given origin ~o reduces to Algorithm 2
when the global direction (0, 0, 1)T is assumed. Each spin
image from the scene is compared with the spin image from
the model. Two spin images A and B, each having k =
nm bins, are compared by determining the linear correlation
coefficient [3]:
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When a spin image created at a point ~o in the scene has a
linear correlation coefficient greater than a certain threshold
corrthresh, that point is added to the set of detections D.

In general there will be multiple neighboring points for
a single object that match the model well enough. In the
experiments described in the next section, matching points
are found to be centered at the roof of a car. In step 2 of
Algorithm 1 detections that can be captured in the range
of a single spin image are considered a cluster LD. Since
the number of target objects in the scene is not known in
advance, not all clustering algorithms are suitable. In our
approach, clustering is based on the Delaunay tessellation
created from the scene points, i.e. a mesh which connects
all scene points. In this mesh all edges longer than αmax

1When the global direction is represented by some vector ~m
instead of ~n = (0, 0, 1)T , a point ~p should be rotated using
the quaternion product: q~pq∗, with q = [(~m × ~n)/‖(~m ×
~n)‖, arccos(~m · ~n)]



Algorithm 1 Outline

1. Find set of detection locations, D, using spin images
Imodel ← spin(Pmodel, αmax, βmin, ρ, top(Pmodel))
D = ∅
for all ~p ∈ Pscene do
Iscene ← spin(Pscene, αmax, βmin, ρ, ~p)
corr ← correlation(Imodel, Iscene)
if corr > corrthresh then
D ← D ∪ {~p}

end if
end for

2. Add cluster label to detections: ~p→ [~p, l]

LD = DelaunayCluster(D)

3. Determine centroid for each cluster, C
C = ∅
for all l ∈ labels(LD) do
Dl ← {~p | [~p, k] ∈ LD ∧ l = k}
Cl ← 1/‖Dl‖

∑
~p∈Dl

~p
end for

4. Verify quality, find final locations T and orientations R
Objects← ∅
for all ~c ∈ C do
Pcutout ← {~p ∈ Pscene | ‖~px,y − ~cx,y‖ < αmax ∧

βmin < ~cz − ~pz < 0}
(T,R, ε)← icp(Pmodel, Pcutout)
if ε < εthresh then
Objects← Objects ∪ {(~T , ~R, ε)}

end if
end for
return Objects

Algorithm 2 I = spin(Pointset, αmax, βmin, ρ, ~o)

Require: spin normal in z-direction, i.e. (0, 0, 1)T

m← dαmax/ρe
n← dβmax/ρe

I ←

[
0 ··· 0

...
. . .

...
0 ··· 0

]
m×n

for all (x, y, z) ∈ Pointset do

α←
√

(~ox − x)2 + (~oy − y)2

β ← z − ~oz
if α < αmax and βmin < β < 0 then
i← bα/ρc
j ← bβ/ρc
Ii,j ← Ii,j + 1

end if
end for
return I

Figure 4: Triangles denote locations with well
matching spin images.

are removed which results in a set of isolated connected
components. Every point in such a connected component
is assigned the same cluster label l.

In step 3 the center of gravity Cl is determined for each
cluster l which is the mean location of the points in cluster
l. The center is used as the unique detection location per
object. Notice that for this procedure to work, at least three
adjacent detections per object need to be found.

In step 4 points Pcutout in the neighborhood of a detection
are selected from the scene. These points are then aligned
using the ICP algorithm. The alignment procedure results
in a final estimation of location T , orientation R and a fit-
ting error. If the error is smaller than a certain threshold,
the location and orientation are added to the final results.
In more detail, after the detection of potential cars the ori-
entation of the car remains unknown, because spin-images
are rotation invariant. To this aid we employ the Iterative
Closest Point (ICP) algorithm to establish the correct cor-
respondence between the object model Pmodel and a part
of the scanned scene Pcutout. Since the ICP algorithm re-
quires an initial alignment, we initialize the ICP algorithm
with twelve different orientations of the car model. The
ICP algorithm then optimizes each of the initial orientation
and position of the car model in the scene, and we keep the
ICP refinement with the lowest Root Mean Square (RMS)
distance. The twelve orientations that we use are different
rotations around the up-vector in steps of 30 degrees. The
ICP algorithm that we apply optimizes the RMS distance
between closest point pairs of the model’s vertices to the
scanned scene.

drms(Pmodel ,Pcutout) =

√√√√ 1

n

n∑
i=1

emin(pi,Pcutout)2

where emin is the Euclidean distance between a point p of
the Pmodel to its closest point in the Pcutout. For time-
efficiency we use a Kd-tree of Pcutout for fast closest point
pair selection and only fifteen iterations for the ICP algo-
rithm. In the ICP algorithm we select eighty percent of the
best matching point pairs are used to estimation the best
location T and orientation R. These are common variants
of the ICP algorithm as described in [5]. The assumption
is that a model fits only well to scanned objects with the
same 3D shape properties. When the residual ICP distance
between the model and the scene is small enough, then we
have an actual segmentation of the 3D shape.

3. EXPERIMENTS



Figure 5: Models fitted in the scene.

In this section the method proposed above is applied to the
detection of cars in different scenes. The robustness of the
method is demonstrated, first by making an artificial scene
more realistic and secondly, by applying it to real world data.

3.1 Artificial Dataset
The scene depicted in Figure 1 was created with a 3D

modeling software program. The scene contains four cars of
model 1 and four cars of model 2. All meshes in the entire
scene were then uniformly sampled to create a point cloud
containing 250,000 points. Each car in the scene contained
roughly 6,000 points. In the same way a point cloud for car
model 1 as shown in Figure 2 was created, which contains
25,000 points.

A spin image of the model was created with a resolution
ρ of 0.1 m. The radius of the spin image was set such that
the 4.2 m car easily fits in the image: αmax = 2.5 m. The
height of the spin image was taken to be smaller than the
height of the car model, in order to discard the ground in
the matching process: βmin = −1.0 m. The spin image was
positioned at the point with the largest z-value, i.e. the
rooftop. Figure 3 shows the spin image for this car model.

In the matching process, each point in the scene acts as a
sampling point at which a scene spin image is made. All
sampling points with a spin image correlation coefficient
greater than εthresh = 0.6 were considered in the clustering
step. The geometric meaning of the threshold parameter is
not a very intuitive and was therefore chosen somewhat ar-
bitrarily. This fixed value was successfully used in all subse-
quent experiments from which we conclude that the method
is not very sensitive to the choice of this parameter.

All four cars of model 1 were successfully detected. Fig-
ure 4 shows the detected cars in black. With coarser set-
tings, a spin image bin size of ρ = 0.2 m, sufficient details
are lost to consider the two car models equivalent and detect
all eight cars in the scene. In other words, this allows for
generalized searches for unknown models.

3.2 Data from a Single Viewpoint
As a bridge to apply the method to a real world dataset,

we anticipate that a point cloud may be acquired from a sin-
gle viewing direction. In particular, we assume the scene to
be observed from above, resulting in a sparse or absent point
sampling from the sides of objects in the scene. The repre-
sentation of the model to be fitted can use this prior knowl-
edge by preventing matching error for parts of the model
that can not be seen from that direction. Figure 6 shows a

point cloud of the car model sampled at faces that can be
seen from above.

Figure 6: Car model sampled as if it was scanned
from above.

The consequence of this step is that cars located below
other objects will be lost. In particular, this holds for the
rightmost car under the tent in Figure 1.

3.3 Data with Gaussian Noise
In addition to using projected data, the robustness of sin-

gle spin matching in noisy data is tested. Different levels of
normal distributed noise are added to the artificial dataset
containing 7 cars (the partly occluded car is not counted).
For each noise level it is analyzed how many object detec-
tions are found. The results are depicted in Figure 7.

Figure 7: Influence of noise on Spin Matching.

It can be seen that the breakdown point lies at a noise level
of approximately σ = 25 cm. For this amount of noise no
cars are found anymore. Furthermore it is observed that for
low noise levels false detections, where no car is present, are
found. Note that all parameters of our method (including
the threshold) are not changed for this experiment.

The subsequent ICP model fitting step is presented thor-
oughly when our method is applied on the real world dataset
in the next section.

3.4 Real World Dataset
To obtain a real-life dataset visual reconstruction was per-

formed using Bundler [6] and Patch-based Multi-view Stereo
Software (PMVS2) [2] on several locations. In this paper we
present results from the balcony of the TNO building. The
balcony has a height of roughly 20 meters, and a width of
nearly 80 meters. The reconstruction yielded a point density
of roughly 1000 points/m2 (Figure 8).

For detecting and fitting cars in this dataset, the same
car model as for the artificial scene is used. The scene con-
tains 13 cars. With the same parameters as before, 18 lo-
cations are marked by the spin image matcher, of which 12



Figure 8: Visual reconstruction for the Stieltjesweg.
From the right viewpoint the first impression of the
reconstruction quality is good. The inset shows,
however, that the cars are noisy and incomplete.

Figure 9: Two matching cars found at Stieltjesweg.
The purple and brown car models are fitted in the
point cloud.

are indeed good matches. At these 18 locations, the ICP
algorithm tries to fit the car model. Based on the residual
RMS distance we determine whether or not a car similar to
our car model is present at the potential locations. Further-
more, it is important to investigate the effect of the number
of model samples (n) used in the ICP algorithm.

0 n = 100 n = 500 n = 1000 n = 2000 init
1 172 197 193 199 wrong
2 106 114 124 121 good
3 173 175 179 180 wrong
4 150 158 170 162 good
5 140 161 164 159 good
6 112 114 123 117 good
7 135 158 159 159 good
8 128 116 122 123 good
9 142 158 158 160 wrong
10 84 94 100 106 good
11 135 139 150 143 wrong
12 119 145 147 159 good
13 103 98 108 105 good
14 83 88 87 91 good
15 183 189 192 176 good
16 148 167 167 170 wrong
17 131 145 159 148 good
18 152 185 187 188 wrong

Table 1: The residual RMS distance (mm) is de-
termined for each model fit in the scene. The rows
represent the fitted cars from left to right. On the
potential cars locations 2, 6, 8, 10, 13, and 14 the
model fits well. The columns show the results for a
different amount of samples. The last column shows
whether or not a good initialization was available.

In the following experiment we vary the number of random
samples n selected from the top part of the car model in
order to determine a good trade-off between a fast alignment
and a robust alignment. Four sets of samples were used;
100, 500, 1000, 2000 random sets of samples, also shown
in Figure 12. For each of these smaller subsets we use the
ICP algorithm to acquire the optimal alignment on a spin
location. Table 1 shows for each of the spin locations how
well the ICP algorithm was able to fit the model in the scene.
These results correspond to the fitted cars shown in Figure
10 from left to right. These results show that locations 2,
6, 8, 10, 13, and 14 are locations where the model fits very
well and the residual RMS distance is low. An important
observation is that for this set of six detections it does not
matter if 500, 1000, or 2000 samples were used, the residual
RMS distances are in these cases distinctive enough from
the other 12 detections. The results for 100 samples appear
to be less discriminative. Nevertheless, this means that the
segmentation of this specific type of car can be done very
efficiently with the use of only 500 surface samples and a
RMS-threshold of 115 mm. The accepted car segmentations
are shown in Figure 11.

Figure 10: The selected sets of samples used in the
ICP algorithm to detect the orientation of the cars.



Figure 11: The fitting results (n=500) on the selected spin locations. Several detections have wrong locations
and orientations. Note that for the visualization the original 3D model is used.

Figure 12: The selected fitting results (n=500) based on the RMS threshold.

4. CONCLUSION AND FUTURE WORK
The proposed method successfully exploits the prior know-

ledge, the global scene orientation, to efficiently recognize
objects in a scene. Whether the assumption of having a
known global direction and therefore finding objects with 5
instead of 6 degrees of freedom is realistic, depends on the
application domain. As demonstrated, an outdoor scene is
an example for which this can be the case.

The proposed method is less computationally expensive
than classical spin image matching. Firstly, it only consid-
ers objects rotated over a single axis instead of arbitrary
rotations, and is therefore a problem with less degrees of
freedom. As a consequence an optimized algorithm for spin
image creation in this specialized case was given. In addi-
tion, it does not require expensive normal estimation from
a point cloud to generate a spin image. Secondly, for each
possible object location a single spin image match is per-
formed, as opposed to comparing sets of spin images. It
therefore is an attractive alternative for detecting objects in
larger scenes.

The robustness of detecting objects was tested on an ar-
tificial scene containing Gaussian noise and in a real-world
scene. The experiments showed that under controlled distor-
tions of an artificial scene, the proposed method performed
very well. With unadapted parameters, it was also able to
retrieve equivalent cars in a sparser real-world dataset. As
far as we could verify, this is the first time general object
recognition and model fitting is presented in a 3D recon-
struction from photos.

Depending on the viewpoint and occlusions in the scene
cars may not be completely covered in the 3D reconstruc-

tion, in our future work we will tackle these challenges with
the use of partial matching.
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