
Hyperbolic Surfaces in the Grassmannian

P.T. Eendebak

Department of Mathematics, Utrecht University,
Budapestlaan 6, 3584 CD, Utrecht, The Netherlands

Abstract
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1 Introduction

In this article we study hyperbolic surfaces in the Grassmannian of 2-planes
in a 4-dimensional vector space. This type of surface occurs naturally in the
study of partial differential equations. See Section 3 for the relation between
these surfaces and partial differential equations.

On the tangent space of the Grassmannian there is an invariant conformal
quadratic form. The elliptic and hyperbolic surfaces correspond to the surfaces
on which this conformal quadratic form restricts to a non-degenerate definite
or indefinite conformal quadratic form, respectively. The elliptic surfaces have
already been described by McKay [1,2] using complex numbers.

For the compact hyperbolic surfaces we obtain a topological classification
(Theorem 11), similar to the classification for compact elliptic surfaces de-
scribed by Gluck and Warner [3]. A compact hyperbolic surface is either a
torus or a Klein bottle. We also study a special class of hyperbolic surfaces
called the geometrically flat surfaces. We show that, even though the condi-
tion for a surface to be geometrically flat is quite rigid, there exist several
different classes of geometrically flat compact surfaces. We conclude the study
by giving a calculation of the local invariants of hyperbolic surfaces under the
action of the general linear transformations of the vector space. Because the
conformal isometry group is finite-dimensional, we can give in the generic case
a complete description of the invariants at all orders.

2 Grassmannians

Let V be an n-dimensional vector space. The Grassmannian Grk(V ) [4,5] is
defined as the set of all k-dimensional linear subspaces of V . The k-dimensional
linear subspaces of V are also called k-planes in V . The group G = GL(V )
acts transitively on V and this induces a transitive action on Grk(V ). The
stabilizer group of a k-plane L is the group H = { g ∈ GL(V ) | g(L) = L }.
The Grassmannian is a homogeneous space G/H of dimension k(n−k). There
is a unique differentiable structure on G/H = Grk(V ) such that G→ G/H is
a principal fiber bundle [6, Theorem 1.11.4].

We denote the manifold of oriented k-planes by G̃rk(V ). Locally Grk(V ) and
G̃rk(V ) are diffeomorphic. The space of oriented k-planes is a 2-fold cover of
the space of unoriented k-planes.

Given an element L ∈ Grk(V ) we can introduce local coordinates for Grk(V ) in
the following way. Select a complementary subspace M such that L⊕M = V .
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Let Gr0
k(V,M) be the open subset of Grk(V ) of k-planes that are transversal

to M .

Lemma 1 The space Lin(L,M) is diffeomorphic to Gr0
k(V,M) through the

map A ∈ Lin(L,M) 7→ {x+ Ax | x ∈ L } ∈ Grk(V ).

The diffeomorphisms described in the previous lemma for different k-planes
L, M provide coordinate charts for Grk(V ). The coordinate transformations
between these charts are rational maps.

Let L0 be a point in Grk(V ). We define ΣL0 = {L ∈ Grk(V ) | L ∩ L0 6= { 0 } }.
If we choose a transversal (n− k)-plane M and use the local coordinates from
Lemma 1, then ΣL0 ∩Gr0

k(V,M) = {A ∈ Lin(L0,M) | kerA 6= 0 }. If n = 2k,
then ΣL0 is determined by the k × k-matrices with determinant zero. This
is a hypersurface in the Grassmannian with a conical singularity at the zero
matrix.

In the case of 2-planes in V = R4 there is another view of the Grassmannian.
In the remainder of the paper we will assume V has dimension 4. Every 2-
plane in V can be represented by 2 linearly independent vectors X, Y . Such a
pair defines a non-zero element X ∧ Y of Λ2(V ). Since Λ4(V ) ∼= R the map

λ : Λ2(V ) → Λ4(V ) : η 7→ η ∧ η

can be viewed as a homogeneous polynomial of degree 2. The elements X ∧Y
that represent a 2-plane all satisfy λ(X∧Y ) = X∧Y ∧X∧Y = 0. Conversely,
if an element η ∈ Λ2(V ) \ { 0 } satisfies λ(η) = 0, then it can be written as
η = X ∧ Y for two linearly independent vectors X, Y ∈ V .

Lemma 2 The Grassmannian of 2-planes in a 4-dimensional vector space V
is isomorphic to N = { η ∈ Λ2(V ) | η 6= 0, λ(η) = 0 }/R∗ ⊂ P(Λ2(V ))).

The zero set of λ defines a smooth quadratic hypersurface in P(Λ2(V )). The de-
scription of the Grassmannian as a smooth quadratic is due to Plücker [7]. The
oriented Grassmannian is isomorphic to the quadric defined by λ in Λ2(V )/R+.

2.1 Conformal quadratic form

We recall the following well-known lemma [4, Lecture 16].

Lemma 3 Let L be a k-plane in Grk(Rn). Then TL Grk(Rn) is canonically
isomorphic to Lin(L,Rn/L).

In the case that n = 4 and k = 2, we can identify Lin(L, V/L), after a choice
of basis in L and V/L, with the space of 2 × 2-matrices. The determinant
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of a 2 × 2-matrix defines a quadratic form of signature (2, 2). This gives a
quadratic form on the tangent space of Gr2(V ) that depends on the choice
of basis. Modulo a scalar factor this quadratic form is well-defined and hence
we have defined a conformal quadratic form ξ on the tangent space of Gr2(V )
which is invariant with respect to the action of the group GL(V ). For other
introductions to this conformal quadratic form see [8, pp. 19–23] or [1, pp.
19–20].

The kernel of the action of GL(V ) on Gr2(V ) is equal to the scalar multiples of
the identity transformation. This implies P GL(V ) acts effectively on Gr2(V ).
The action of both GL(V ) and P GL(V ) on Gr2(V ) is by conformal trans-
formations. This can be seen for example from the expression of this action
in local coordinates, see formula (4) on page 7. The following lemma (proved
in [9, Lemma 2.1.5]) completely characterizes the conformal isometries of the
Grassmannian.

Lemma 4 Let V be a real 4-dimensional vector space. The conformal isom-
etry group of Gr2(V ) is equal to P GL(V ). The conformal isometry group of
G̃r2(V ) is equal to the group P GL+(V ) of orientation preserving projective
linear transformations.

Any conformal quadratic form ξ on a vector space W defines an isotropic
cone C = {w ∈ W ⊗ C | ξ(w) = 0 }. If W is 2-dimensional and the confor-
mal quadratic form is non-degenerate, then the isotropic cone consists of two
distinct complex 1-dimensional linear subspaces which are called the char-
acteristic lines of the conformal quadratic form. If the conformal quadratic
form is definite, then the intersection of the isotropic cone with W consists
of the origin. If the form is indefinite, then the intersection of the isotropic
cone with W consists of two 1-dimensional lines in W . We call these lines the
characteristic lines as well.

2.2 Plücker coordinates

We have described the Grassmannian Gr2(V ) as the space of elements η in
Λ2(V )/R∗ that satisfy η ∧ η = 0. In this section we will use the eigenspaces of
the Hodge ∗ operator to show that the Grassmannian Gr2(V ) is diffeomorphic
to the direct product of two spheres.

Let e1, e2, e3, e4 form a basis for V . With respect to the volume form Ω =
e1 ∧ e2 ∧ e3 ∧ e4 we have the Hodge star operator ∗ : Λ2(V ) → Λ2(V ). We
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define

α1 = (1/2)(e1 ∧ e2 + e3 ∧ e4),
α2 = (1/2)(e1 ∧ e3 − e2 ∧ e4),
α3 = (1/2)(e1 ∧ e4 + e2 ∧ e3).

β1 = (1/2)(e1 ∧ e2 − e3 ∧ e4),
β2 = (1/2)(e1 ∧ e3 + e2 ∧ e4),
β3 = (1/2)(e1 ∧ e4 − e2 ∧ e3).

The forms αi, βj satisfy

αi ∧ βj = 0, αi ∧ αj = δijΩ, βi ∧ βj = −δijΩ.

The eigenspaces of the Hodge operator are E+ = 〈αj〉, E− = 〈βj〉 correspond-
ing to the eigenvalues 1 and -1 of ∗, respectively. We can decompose any
η ∈ Λ2(V ) in terms of these eigenspaces. Write η = X iαi + Y jβj. The coeffi-
cients X i, Y j can be used to parameterize the Grassmannian and are called
Plücker coordinates. The name Plücker coordinates is misleading because the
coefficients do not define real coordinates for Gr2(V ). A pair (X, Y ) only de-
fines an element of the Grassmannian if the Plücker form λ is zero and two
elements that are a scalar multiple of each other define the same element in
the Grassmannian. The conformal quadratic form λ acts on η as

λ(η) = (X1)2 + (X2)2 + (X3)2 − (Y 1)2 − (Y 2)2 − (Y 3)2.

Lemma 5 Let S+ and S− be two copies of the 2-sphere S2 ⊂ R3. Then the
map

S+ × S− → Λ2(V )/R+ : (X, Y ) 7→ X iαj + Y jβj

defines a diffeomorphism from S+ × S− to the oriented Grassmannian. The
unoriented Grassmannian is diffeomorphic to S+ × S−/(−I,−I).

PROOF. This result is from [3]. Since (X, Y ) ∈ S+ × S− satisfies |X|2 =
|Y |2 = 1, the image of this map is contained in the kernel of the Plücker form
λ.

2.3 Conformal group

In this section we analyze the action of the group of conformal transformations
on the 2-planes in the tangent space of the Grassmannian.

The group CO(2, 2) of conformal transformations of R4 with a conformal
quadratic form of signature (2, 2) is isomorphic to (GL(2,R)×GL(2,R))/R∗ ∼=
SL(2)×SL(2)×H,H = R∗, see [8]. If we represent R4 by 2×2-matrices and the
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conformal quadratic form by the determinant, then the action of the conformal
group is given by

(α̃, δ̃) ∈ CO(2, 2) : X 7→ δ̃Xα̃−1. (1)

Let e1, . . . , e4 be the standard basis for V = R4 and take e1, e2 and e3, e4 as a
basis for L0 = Re1 + Re2 and M = Re3 + Re4, respectively. With these bases
we can identify Lin(L0,M) ∼= Gr0

2(V,M) with the space of 2×2 matrices. The
action of g ∈ GL(V ) on the Grassmannian in these local coordinates is given
by

g =

α̃ β̃

γ̃ δ̃

 : A 7→ (γ̃ + δ̃A)(α̃+ β̃A)−1. (2)

Here α̃, β̃, γ̃ and δ̃ are 2 × 2-matrices. The action (2) might not be well-
defined for all g since we are working in local coordinates for Gr0

2(V,M), but
it is well-defined for elements g near the identity and matrices A near the zero
matrix.

The tangent space at a point L in the Grassmannian is given in these local
coordinates by the space of 2×2-matrices as well and the conformal quadratic
form ξ on T Gr2(R4) is given by the determinant

ξL : TL Gr2(R4) → R :

A B

C D

 7→ AD −BC.

The point L0 in the Grassmannian corresponds to the matrix A = 0. The
stabilizer group H of L0 is equal to the set of matrices

α̃ β̃

0 δ̃

 , (3)

with α̃, δ̃ invertible 2× 2-matrices and b̃ an arbitrary 2× 2-matrix.

We want to know how the stabilizer H acts on the tangent space of the Grass-
mannian. Suppose that t 7→ tX is a curve through the point L0 that represents
a tangent vector in the Grassmannian. The group H acts on this curve as

t 7→ δ̃tX(α̃+ β̃tX)−1 = tδ̃Xα̃−1 +O(t2).
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So the action of H on the 2-planes in the tangent space is given byα̃ β̃

0 δ̃

 ·X = δ̃Xα̃−1. (4)

This is precisely the action (1) of the conformal group mentioned above.

A 2-dimensional linear subspace of the tangent space T Gr2(V ) will be called
a tangent 2-plane or just a tangent plane.

Definition 6 A tangent 2-plane in T Gr2(V ) is called elliptic if the conformal
quadratic form ξ restricts to a definite non-degenerate quadratic form. A tan-
gent 2-plane in T Gr2(V ) is called hyperbolic if the conformal quadratic form
restricts to a non-degenerate quadratic form of signature (1, 1).

The action of the conformal group on the 2-planes in the tangent space of
Gr2(V ) at a point has exactly 5 orbits of which 2 are open. The two open orbits
correspond to the elliptic and hyperbolic 2-planes. Representative elements for
the 5 orbits are given in [10, Section 7.1, Case 2, p. 272].

Theorem 7 ([9, Theorem 2.1.7]) The general linear group acts transitively
on the Grassmannian of 2-planes. At each point in the Grassmannian the sta-
bilizer subgroup of that point acts transitively on the elliptic tangent planes
and also transitively on the hyperbolic tangent planes.

2.4 Product structures

An (almost) product structure is the analogue of an (almost) complex struc-
ture.

Definition 8 (Product structure) Let V be a 2n-dimensional real vector
space. A product structure (complex structure) on V is an endomorphism
K : V → V such that K2 = I (K2 = − I) and the eigenvalues ±1 (±i) of K
both occur with geometric multiplicity n.

The condition that K2 = I implies that the eigenspaces V± of K for the
eigenvalues ±1 span V . Hence the algebraic multiplicity will always equal the
geometric multiplicity.

Given a product structureK we define V± as the eigenspace ofK for eigenvalue
±1. Then from the definition it follows that V = V+ ⊕ V−. Conversely, if we
have a direct sum V = V+ ⊕ V−, then we can define a product structure on V
by K|V± = ± I. Note that for a complex structure J on V , the complexified
vector space is the direct sum V ⊗ C = V+ ⊕ V− of the eigenspaces of J
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corresponding to ±i. A product structure on an even-dimensional vector space
does not determine an orientation. This is in contrast with a complex structure
that does determine an orientation.

3 Partial differential equations

One application of surfaces in the Grassmannian is the occurrence of these
surfaces in the geometric treatment of partial differential equations.

Consider a first order system of partial differential equations in two unknown
functions u, v and two variables x, y. The system is determined if it is given
by two equations

F (x, y, u, v, ux, uy, vx, vy) = 0, G(x, y, u, v, ux, uy, vx, vy) = 0, (5)

such that the matrix Fux Fuy Fvx Fvy

Gux Guy Gvx Gvy


has rank 2 at all points F = G = 0. Let B equal R2 × R2 with coordinates
x, y, u, v. The first order system (5) defines for each point b = (x, y, u, v) in B
a codimension 2 surface in Gr2(TbB). This defines a codimension 2 submani-
fold of Gr2(TB) called the equation manifold of the system (5). The tangent
space to the graph of pair of functions u(x, y), v(x, y) at the point (x, y) is
a 2-dimensional linear subspace of V = T(x,y,u,v)B and hence an element of
Gr2(TbB). A pair of functions u(x, y), v(x, y) is a solution to the system of
partial differential equations (5) if and only if the tangent spaces to the graph
of this pair are all contained in the equation manifold of the system. The sur-
faces in Gr2(TbB) for b ∈ B defined by the system are elliptic or hyperbolic
in the sense to be described in Section 2 below, if the first order system is
elliptic or hyperbolic in the classical sense, see [9, Remark 4.6.2]. We should
note that any hyperbolic surface can be realized locally as one of the fibers of
a system of partial differential equations.

The point transformations of the systems mentioned above with a fixed point
at b ∈ B act on V by linear transformations. Hence these transformations
induce actions on the Grassmannian by conformal transformations. The in-
variants of hyperbolic surfaces and the topological type of compact hyper-
bolic surfaces (both explained in the sections below) are therefore invariants
of these particular systems of partial differential equations under point trans-
formations.
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Also for other types of system of partial differential equations, such as second
order scalar equations in the plane [9], these surfaces occur. For second order
scalar equations the invariants of hyperbolic surfaces are invariants for the
contact transformations.

4 Hyperbolic surfaces in the Grassmannian

Let S be a surface in the Grassmannian. The conformal quadratic form on the
tangent space of the Grassmannian restricts to a conformal quadratic form on
the tangent space of S. For generic tangent spaces the form is non-degenerate
and is either definite (elliptic tangent planes) or indefinite (hyperbolic tangent
planes). If the conformal quadratic form is definite this defines an almost
complex structure on the surface and if the form is indefinite this defines an
almost product structure on the surface. The surfaces with an almost complex
structure or almost product structure are always integrable and have no local
invariants. So studying the local geometry of these surfaces with the additional
conformal structure itself is not very interesting.

However, the surfaces are embedded in the Grassmannian and it is very inter-
esting to study the surfaces in the Grassmannian under the conformal isometry
group of the Grassmannian. The reason for this is that, as explained in the
previous section, the point and contact transformations of systems of partial
differential equations often induce actions on Grassmannians by conformal
transformations. Here we write down the theory of surfaces to which the con-
formal quadratic form restricts to an indefinite quadratic form (the hyperbolic
case). Part of the elliptic case was already done by McKay [1, Chapter 4].

Let S be a surface in Gr2(V ). At each point s ∈ S the tangent space TsS
has dimension 2 and the conformal quadratic form restricts to a conformal
quadratic form on TsS. We call the point s elliptic or hyperbolic if the tangent
space of S at s is an elliptic or hyperbolic tangent plane, respectively. A surface
for which all points are elliptic or hyperbolic is called an elliptic surface [11,1]
or hyperbolic surface, respectively 2 .

For a hyperbolic surface the conformal quadratic form restricts on the tangent
space of the surface to a non-degenerate conformal quadratic form of signature
(1, 1). The kernel of the quadratic form is given by two lines in the tangent
space. The vectors in the two lines are called the characteristic vectors. Since
these characteristic vectors depend smoothly on the point of the surface, the
characteristic vectors locally define a pair of transversal rank 1 distributions.

2 The reader should not confuse the term hyperbolic surface with the surfaces of
constant negative curvature.
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The integral curves of these distributions are called the characteristic curves.

4.1 Standard hyperbolic tori

Every product structure on a 4-dimensional vector space V determines a
hyperbolic surface. Let K be a product structure on V . Then we define
the standard hyperbolic torus Gr2(V,K) associated to K as the set of all 2-
planes that are K-invariant and satisfy the non-degeneracy condition that
K restricted to the 2-plane is not equal to ±I. The elements of Gr2(V,K)
are called hyperbolic lines This definition can be compared to the defini-
tion of the complex lines for a complex structure in [1, p. 14]. The stan-
dard hyperbolic torus defined by a product structure is topologically indeed a
torus. If we let V± ⊂ V be the eigenspaces of the product structure K, then
Gr1(V+)×Gr1(V−) → Gr2(V,K) : (l1, l2) 7→ l1 + l2 is an isomorphism.

4.2 Intersection curves

In this section we will analyze the intersection of a hyperbolic surface S with
ΣL0 (see page 3) for L0 a point on the hyperbolic surface. The manifold ΣL0

has dimension 3 and has a singularity at L0. We will prove that locally the
intersection of S and ΣL0 looks like two curves intersecting transversally at
L0.

First we introduce local coordinates around the point L0 in the Grassmannian.
Let L0 be the plane in Gr2(R4) spanned by the two vectors (1, 0, 0, 0)T and
(0, 1, 0, 0)T and let M = R(0, 0, 1, 0)T + R(0, 0, 0, 1)T. We use the local coor-
dinates for the Grassmannian described on page 6. In these local coordinates
we have

L0 =

0 0

0 0

 , ΣL0 ∩Gr0
2(V,M) =


a b
c d

 | ad− bc = 0

 .

The surface S is then given as a 2-dimensional surface in the space of 2 × 2-
matrices and the point L0 corresponds to the zero matrix. Since the general
linear group acts transitively on the hyperbolic tangent planes, we can arrange
by a coordinate transformation that the tangent space to S is spanned at the
point L0 by the two tangent vectors

X1 =

1 0

0 0

 , X2 =

0 0

0 1

 .
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In these coordinates we can parameterize the surface S using two coordinates
a, b as

Γ : U ⊂ R2 → S : (a, b) 7→

 a φ(a, b)

ψ(a, b) b

 ,

with φ and ψ functions that vanish up to first order in a, b.

The manifold ΣL0 is given by the 2-planes that have non-trivial intersection
with L0. These planes are precisely the planes for which the corresponding
2 × 2-matrices in local coordinates have zero determinant. Then S ∩ ΣL0 is
given by the condition ab−φ(a, b)ψ(a, b) = 0. But the product φ(a, b)ψ(a, b) is
at least of order 4 in a and b, hence by the Morse lemma this set looks locally
like the zero set of ab which is a cross at the origin. We call the two curves
the intersection curves of the surface S through the point L0.

Example 9 (Standard hyperbolic torus) The standard product structure
K on R4 is given by the direct product R2 × R2. Let S = Gr2(R4, K) be the
surface of hyperbolic lines in R4 for this product structure. The surface can be
parameterized as

(θ, φ) 7→ R (cos θ, 0, sin θ, 0)T + R (0, cosφ, 0, sinφ)T ∈ Gr2(R4).

In the local coordinates introduced previously we have

S ∩Gr0
2(V,M) =


a 0

0 d

 | a, d ∈ R

 .

The intersection of S and ΣL0 is easy to calculate and is given by

S ∩ ΣL0 ∩Gr0
2(V,M) =


a 0

0 0

 | a ∈ R

 ∪


0 0

0 d

 | d ∈ R

 .

For every point L on the surface the characteristic curves through L are equal
to the intersection curves through L defined by ΣL ∩ S.

We have proved that for a general hyperbolic surface S and point L0 on
this surface the intersection ΣL0 ∩ S looks locally like two curves intersecting
transversally at L0. We can compare this pair of curves with the characteristic
curves through the same point L0. In general the characteristic curves and the
intersection curves through a point L0 are different, although at the point L0

they have at least contact of order 2 [9, p. 65]. It can also happen that the
characteristic curves through L0 and the curves determined by ΣL0 ∩ S are
identical (see Example 9 above and Section 4.4 on geometrically flat surfaces).
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Example 10 We consider the surface defined in local coordinates for the
Grassmannian by the matrices

Γ(a, b) =

 a a2

a2 b

 .

The intersection curves through the origin follow from the equation det(Γ(a, b)−
Γ(0, 0)) = ab−a4 = a(b−a3) = 0. Here we can explicitly factorize the equation
and this gives the intersection curves a = 0 and b = a3. The characteristic
lines at a point (a, b) are spanned by

 1 2a

2a 4a2

 and

0 0

0 1

 .

Integrating the characteristic lines defined by the first matrix yields the char-
acteristic curves (a(t), b(t)) = (a0 + t, b0 +(4/3)((a0 + t)3− (a0)

3)). Integration
of the other matrix gives (a(t), b(t)) = (a0, b0 + t). We immediately see that
the intersection curves a = constant overlap with the characteristic curves,
but the other intersection curves do not overlap with the characteristic curves.

4.3 Compact hyperbolic surfaces

Gluck and Warner [3] proved that every connected compact elliptic surface
in the oriented Grassmannian can be deformed through elliptic surfaces to
a Riemann sphere given by the complex lines for a complex structure on V .
For the hyperbolic surfaces the situation is more complicated. A connected
compact hyperbolic surface can be topologically a torus or Klein bottle and
these different types of surfaces can never be deformed into each other.

Theorem 11 Let S be a connected compact hyperbolic surface in Gr2(V ) or
G̃r2(V ). Then S is either a torus or a Klein bottle.

PROOF. The condition that a surface in the Grassmannian is hyperbolic
implies that at each point of the surface there are two characteristic lines in
the tangent space. Locally, we can always choose a basis of the tangent space
to S consisting of two non-zero vector fields tangent to these characteristic
lines. We can locally make the choice of such a basis unique by choosing a
metric on the surface, an order for the two characteristic lines (so we label one
of the characteristics as the first and the other as the second characteristic
line) and a positive direction for each of the characteristic lines.
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We can also choose a global metric for the surface (for example the metric
induced from the diffeomorphism of the Grassmannian to S+ × S−), but it is
not always possible to make a global choice of order of the characteristics and
directions. We can always pass to a cover of the surface on which the basis of
vector fields is globally defined. We need at most a 8 : 1 cover for this. First
a 2 : 1 cover for the ordering of the characteristic lines and then two times a
2 : 1 cover for the direction of each of the characteristic lines.

Next consider the case of a compact hyperbolic surface. The covering surface
is also compact and it is orientable. The covering surface has a trivial tangent
space and this implies the surface has Euler characteristic zero; topologically
the surface is a torus. Since the covering surface has Euler characteristic zero,
the original surface is a compact surface with Euler characteristic zero and
must be either a torus or a Klein bottle. The original surface is a torus if it is
orientable and a Klein bottle if it is non-orientable.

There exist explicit examples of compact surfaces in both the oriented and
unoriented Grassmannian that are diffeomorphic to a Klein bottle, see the
examples below. The standard hyperbolic torus defined by a product structure
is a compact hyperbolic surface that is homeomorphic to a torus.

Gluck and Warner proved not only that every compact elliptic surface is a
2-sphere, but even that every compact elliptic surface can be deformed to
the standard elliptic surface. Again for compact hyperbolic surfaces the sit-
uation is more complicated. The oriented and unoriented Grassmannian are
both connected, but the oriented Grassmannian (which is the product of two
spheres) is simply connected and hence the fundamental group is trivial. The
unoriented Grassmannian has fundamental group π1(Gr2(V )) ' Z/2Z. There
exist compact hyperbolic surfaces homeomorphic to a torus in the unoriented
Grassmannian for which one of the generators of the fundamental group of the
torus defines a non-trivial element in the fundamental group of the unoriented
Grassmannian, but also compact hyperbolic surfaces for which the generators
are all trivial in the fundamental group of the unoriented Grassmannian. Ex-
amples of both types are given in Example 14. These different surfaces can
not be deformed into each other.

The author is not aware of any other topological obstructions against defor-
mations, besides the topology of the surface and the mapping on fundamental
groups. The examples in this section show these invariants are not enough to
give a complete classification of the compact hyperbolic surfaces up to isotopy.

Example 12 We consider the oriented Grassmannian G̃r2(V ) as the product
of two spheres S+ × S−. A family of immersed surfaces in the Grassmannian
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is given by

Φ : (s, t) 7→


cos(s)

0

sin(s)

×


cos(t)

sin(αs) sin(t)

cos(αs) sin(t)

 .

The tangent space at a point of the surface is spanned by the two vectors
Φs = ∂Φ/∂s and Φt = ∂Φ/∂t. Solving the characteristic equation ξ(aΦs +
bΦt) = 0, where ξ is the conformal quadratic from on the tangent space of the

Grassmannian, yields b = ±a
√

1− α2 + α2 cos2(s). For |α| < 1 the surface
has two distinct real characteristics at each point and hence the surface is
hyperbolic.

For α = 0 we have an embedded torus. The standard torus T = R/(2πZ) ×
R/(2πZ) is embedded as the product of two great circles; the explicit parame-
terization is given by

T → S+ × S− : (s, t) 7→
(
(cos(s), 0, sin(s))T, (cos(t), 0, sin(t))T

)
.

For α = 1/2 the surface is a globally defined and compact surface K; topolog-
ically the surface is a Klein bottle. A 2 : 1 cover of the torus T̃ = R/(4πZ)×
R/(2πZ) to the Klein bottle K ⊂ S+ × S− is

T̃ → S+ × S− : (s, t) 7→




cos(s)

0

sin(s)

 ,


cos(t)

sin(s/2) sin(t)

cos(s/2) sin(t)



 .

Example 13 Let γ : R/2πZ → S+ ⊂ R3 be an embedding of the circle into
the 2-sphere with the properties γ(s+ π) = −γ(s) for all s and |γ′(s)| > 1 for
all s. Such embeddings are easy to construct by taking deformations of great
circles and then reparameterizing by arc length. We define T = R/(2πZ) ×
R/(2πZ) and Φ : T → G̃r2(V ) : (s, t) 7→

(
γ(s), (cos s cos t, sin s cos t, sin t)T

)
.

The conformal quadratic form on the tangent space takes the form

ξ(aΦs + bΦt) = a2(|γ′(s)|2 − cos2(t))− b2.

This is an indefinite non-degenerate quadratic form in a, b at all points. Hence
the surface defined by Φ is a hyperbolic surface. The image of the torus T is
a torus in the oriented Grassmannian. The projection of G̃r2(V ) to Gr2(V )
induces a 2 : 1 cover of the torus over a Klein bottle in the unoriented Grass-
mannian.

Example 14 (Compact surfaces and the fundamental group) Let T be
the torus R/(2πZ) × R/(2πZ) and let z be a constant with 0 < z < 1. We
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define two compact hyperbolic surfaces in Gr2(V ) = (S+ × S−)/(−I,−I) by

Φ1 : T → Gr2(V ) : (s, t) 7→




√

1− z2 cos(s)
√

1− z2 sin(s)

z

 ,


cos(t)

sin(t)

0



 ,

Φ2 : T → Gr2(V ) : (s, t) 7→




cos(s/2)

sin(s/2)

0

 ,


cos(t+ s/2)

sin(t+ s/2)

0



 .

Both maps Φ1,Φ2 are embeddings of the torus T into the unoriented Grass-
mannian.

Let γ be the curve in T defined by s 7→ (s, 0). Then γ defines a non-trivial
element [γ] in the fundamental group of T . The embedding Φj induces a ho-
momorphism Φj

∗ from the fundamental group π1(T ) to π1(Gr2(V )). The im-
age (Φ1)∗([γ]) is trivial in π1(Gr2(V )), the image (Φ2)∗([γ]) is non-trivial in
π1(Gr2(V )).

4.4 Geometrically flat surfaces

We define a hyperbolic surface to be geometrically flat if the characteristic
curves and the intersection curves are identical. From Example 9 it is clear
that the standard hyperbolic tori are geometrically flat. The converse is not
true. The space of all standard hyperbolic tori in a Grassmannian is finite-
dimensional. But the surfaces in Example 16 and Example 20 show that ge-
ometrically flat surfaces can depend on an arbitrary function and hence the
space of geometrically flat surfaces is not finite-dimensional. So not all these
surfaces can be standard hyperbolic tori and this proves the class of all geo-
metrically flat surfaces is much larger then the class of all standard hyperbolic
tori.

To analyze the structure of geometrically flat surfaces we start with an ele-
mentary lemma.

Lemma 15 Let V = R4 and let L1, L2, L3 be 2-dimensional linear subspaces
such that dimL1 ∩ L2 = dimL1 ∩ L3 = dimL2 ∩ L3 = 1. Then the Lj are all
contained in a 3-dimensional linear subspace L = L1 + L2 + L3 or the three
subspaces have a 1-dimensional linear subspace l = L1 ∩ L2 ∩ L3 in common,
or both.
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PROOF. Assume that L1 ∩L2 ∩L3 = { 0 }, so the subspaces have no line in
common. Pick vectors e1, e2, e3 in V such that L1 ∩L2 = Re1, L1 ∩L3 = Re2
and L2 ∩ L3 = Re3. We cannot have Re1 = Re2 since this would imply that
Re1 ⊂ L1 ∩ L2 ∩ L3. Hence L1 = Re1 + Re2. Since { 0 } = L1 ∩ L2 ∩ L3 =
L1 ∩Re3 we see that e3 is not in the span of e1, e2. Hence the vectors e1, e2, e3
are linearly independent. From the construction of e1, e2, e3 it is clear that
L1 + L2 + L3 = Re1 + Re2 + Re3 and that dim(L1 + L2 + L3) = 3.

Let S be a geometrically flat surface in Gr2(V ). Let L1, L2, L3 be three different
points on the same characteristic curve γ. Since the surface is geometrically
flat, one of the intersection curves through the point L1 must be identical
to the characteristic curve γ. Therefore both L2 and L3 must have non-zero
intersection with L1 and for the same reason L2 and L3 must have non-zero
intersection. Recall that the points Lk are elements of the Grassmannian and
hence 2-dimensional linear subspaces of V . Because the points L1, L2 and L3

are different points, the intersections must be 1-dimensional and we can apply
Lemma 15. This leads to the conclusion that locally there are three types of
characteristic curves γ on a geometrically flat surface.

1) All points L on γ have a line l1 in common and are contained in a three-
dimensional subspace l3.

2) All points L on γ have a line l1 in common. The points L are not contained
in a subspace of dimension three.

3) All points L on γ are contained in a three-dimensional subspace l3. The
points on γ do not have a line in common.

We say a characteristic curve is of type (2′) if the characteristic curve is either
of type (1) or of type (2). We say a characteristic curve is of type (3′) if the
characteristic curve is either of type (1) or of type (3). For a hyperbolic surface
the type of the characteristic curves does not need to be constant. An example
of such a surface is given in Example 16.

Let Γ : (a, b) 7→ Γ(a, b) ∈ Gr2(V ) be a hyperbolic surface such that the
characteristic curves are given by the equations a = constant and b = constant.
Whenever we have a hyperbolic surface parameterized in this way, we will call
the curves defined by b = constant the horizontal characteristic curves and
the curves a = constant the vertical characteristic curves. For a surface with
(locally) constant type there are nine possibilities: the horizontal characteristic
curves can have type (1), (2) or (3) and the vertical characteristic curves as
well. If we allow to switch the characteristic curves, then there are only six
types. We will say that a geometrically flat surface is of type (i, j) if the
horizontal characteristic lines are of type (i) and the vertical characteristics
are of type (j).
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Example 16 (Changing type) Let Px0,x1(x) be a smooth bump function
that is zero outside the region x0 < x < x1 and non-zero inside this region. We
then define φ1(a) = P0,1(a), φ2(a) = P2,3(a), ψ1(b) = P0,1(b), ψ2(b) = P2,3(b).
Let S be the surface given in local coordinates by the embedding

(a, b) 7→ Γ(a, b) =

 a φ1(a)ψ1(b)

φ2(a)ψ2(b) b

 .

The embedding Γ defines a hyperbolic surface and at each point (a, b) the
matrices ∂Γ/∂a and ∂Γ/∂b are singular. This means that the characteris-
tic curves are given by the lines a = constant and b = constant. To show
that the intersection curves coincide with the characteristic curves consider
an arbitrary point (a, b). The point Γ(ã, b̃) is contained in ΣΓ(a,b) if and only if

det(Γ(a, b)−Γ(ã, b̃)) = 0. Consider the points (ã, b). For these points we have

det(Γ(a, b)− Γ(ã, b)) = (φ1(a)− φ1(ã)) (φ2(a)− φ2(ã))ψ1(b)ψ2(b).

Since ψ1(b)ψ2(b) is identically zero this shows that all points Γ(ã, b) are in
ΣΓ(a,b). This proves that the characteristic curves b = constant coincide with
the intersection curves. A similar analysis shows that also the lines a =
constant coincide the with intersection curves.

The hyperbolic surface in this example has changing type of characteristics. In
Figure 1 the different regions on the surface are separated by black lines and the
types are indicated. For example in the region 1 ≤ a ≤ 2, 1 ≤ b ≤ 2 the surface
has type (2, 3). The points on the horizontal characteristic curve b = constant
are 2-planes that all have the line spanned by the vector (0, 1, 0, b)T in common.
The points on the vertical characteristic curve a = constant are all 2-planes
in the 3-dimensional subspace spanned by the vectors (1, 0, a, 0)T, (0, 1, 0, 0)T

and (0, 0, 0, 1)T. This single example shows that all possible combinations of
type (i, j) exist for hyperbolic surfaces.

Example 17 (Geometrically flat surface of type (2′, 2′)) Let γ and δ
be two curves in Gr1(R4) and define Γ(s, t) = γ(s)+ δ(t). Assume that γ(0) 6=
δ(0) and the tangent map of Γ at (0, 0) is injective. Then Γ (locally near
L0 = Γ(0, 0)) defines a surface S in Gr2(R4). If the tangent plane TL0S to the
surface at L0 is a hyperbolic tangent plane, then S is a hyperbolic surface near
L0.

This surface has the property that every point Γ(s, t0) on the curve φt0 : s 7→
Γ(s, t0) contains the line δ(t0). Hence the intersection curves through the points
L on this curve are all tangent to the curve φt0. Since the intersection curves
are always tangent to the characteristic curves this proofs that φt0 is a char-
acteristic curve for the surface. In a similar way it follows that the curves
ψs0 : t 7→ Γ(s0, t) are characteristic curves and intersection curves for the
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φ2 6= 0φ1 6= 0

ψ1 6= 0

ψ2 6= 0(3, 3)

(1, 3)

(1, 2)

(1, 2)

(3, 2)

(1, 2)

(1, 3)

(2, 3)

(1, 3)
a→

b
→

(2, 3)

(3, 1) (3, 1)

(2, 1)(2, 1)

(1, 1)

(2, 1)

(2, 1)

Figure 1. Geometrically flat surface with changing type of curves

points on ψs0.

This surface is geometrically flat and the type is (2′,2′) because the points
on the characteristic line φt0 have the 1-dimensional linear subspace δ(t0) in
common and the points on the characteristic line ψs0 have the 1-dimensional
linear subspace γ(s0) in common.

Type (2′, 3′). Let S be a geometrically flat hyperbolic surface in Gr2(V ) of
type (2′, 3′) given by (a, b) 7→ Γ(a, b). For every point Γ(a, b) ∈ S the points on
the horizontal characteristic curve (which is of type (2′)) through Γ(a, b) have
a line l1(b) in common. The points on the vertical characteristic curve through
Γ(a, b) are all contained in a 3-dimensional subspace l3(a). The lines l1(b) and
the 3-dimensional spaces l3(a) satisfy the relation l1(b) ⊂ Γ(a, b) ⊂ l3(a). This
relation implies that ⋃

b

l1(b) ⊂
⋂
a

l3(a).

We use the notation
∑

b l1(b) to denote the span of the elements in
⋃

b l1(b).
Then it is clear that

∑
bl1(b) is a linear subspace of

⋂
a l3(a).

The lines l1(b) and the 3-dimensional subspaces l3(a) must both vary as we
vary a and b. For example if l1(b) is constant near L0 = Γ(a0, b0), then near
L0 all points on the surface have a single line l1 = l1(b0) in common. But then
near L0 the intersection ΣΓ(a0,b0) ∩ S is equal to S and this is not possible.
This implies that there is a unique 2-dimensional linear subspace L such that∑

b

l1(b) = L =
⋂
a

l3(a). (6)

If we assume the surface is connected, then the special point L is not a point
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on the surface.

Example 18 (Compact surfaces of type (2′, 3′)) In this example we will
make a construction of a large class of compact hyperbolic surfaces of class (2′,
3′). Recall that for any surface of type (2′, 3′) there is a unique 2-plane L that
satisfies the equation (6). We define

FL = { (l1, l2, l3) ∈ Gr1(V )×Gr2(V )×Gr3(V ) | l1 ⊂ L, l1 ⊂ l2 ⊂ l3, L ⊂ l3 }.
(7)

The space FL is a smooth manifold of dimension 3.

We will analyze the two projections

π2 : FL → Gr2(V ) : (l1, l2, l3) 7→ l2, (8)

π1,3 : FL → Gr1(L)×Gr1(V/L) : (l1, l2, l3) 7→ (l1, l3/L). (9)

The projection π1,3 : FL → Gr1(L)×Gr1(V/L) is surjective. The fiber above a
point (l1, l3/L) is diffeomorphic to Gr1(l3/l1). This shows π1,3 is a P1 bundle
over Gr1(L)×Gr1(V/L).

For every point (l1, l2, l3) ∈ FL the intersection of l2 and L is non-empty. This
implies that the image of π2 is contained in ΣL and it is not difficult to see
that π2 : FL → ΣL is surjective. At the points l2 6= L in the image of π2 we
have π−1

2 (l2) = { (l2 ∩ L, l2, l2 + L) }. So π2 is injective over the complement
of L in Gr2(V ). The rank of Tπ2 over this complement is 3. For the special
point L we have

π−1
2 (L) = { (l1, L, l3) ∈ FL | l1 ∈ Gr1(L), L ⊂ l3 ∈ Gr3(V ) }.

This shows that Tπ2 has rank 1 at the points in FL that project to L. The map

π−1
2 (L) → Gr1(L)×Gr1(V/L) : (l1, L, l3) 7→ (l1, l3/L)

is an isomorphism. This shows that the inverse image π−1
2 (L) defines a special

section of the bundle π1,3 : FL 7→ Gr1(L)×Gr1(V/L).

Let F ′
L = { (l1, l2, l3) ∈ FL | l2 6= L } and let π′2 and π′1,3 be the restrictions

of π2 and π1,3, respectively, to the bundle F ′
L. The fiber of π′1,3 above a point

(l1, l3/L) is isomorphic to Gr1(l3/l1) \ (L/l1) ∼= P1 \ { 0 }. This gives π′1,3 :
F ′

L → Gr1(L)×Gr1(V/L) the structure of an affine line bundle.

For any (local) section σ of the bundle π′1,3 we can consider the composition
π′2 ◦σ : Gr1(L)×Gr1(V/L) → Gr2(V ). The map is embedding since π′2 : F ′

L →
Gr2(V ) has rank 3 and is injective. Global sections of this bundle exist. Take
for example a transversal 2-plane M such that V = L ⊕M . A global section
of π′1,3 is given by (l1, l3) 7→ (l1, l1 +M ∩ l3, l3). The hyperbolic surface defined

19



by the composition of this section with π′2 is the standard hyperbolic torus
Gr2(V,K) for the product structure K defined by V = L⊕M . After a choice
of global section the line bundle F ′

L becomes a rank one vector bundle over
Gr1(L) × Gr1(V/L). The sections of this bundle can locally be parameterized
by exactly one function of two variables. The global sections define compact
geometrically flat surfaces of type (2′, 3′).

Type (1, 1). We will prove that any connected geometrically flat surface S
in Gr2(V ) of type (1, 1) is locally given by the hyperbolic lines for a unique
product structure on V . Note that a surface of type (1, 1) is both a surface of
type (2′, 3′) and of type (3′, 2′). For a surface of type (2′, 3′) there is a unique
2-plane L+ that satisfies (6). Since the surface is of type (3′, 2′) as well, there
is also a unique 2-plane L− with a relation similar to (6). It is not difficult
to prove that S must be equal to a subset of the standard hyperbolic torus
Gr2(V,K) defined by the product structure K that defines the decomposition
V = L+ ⊕ L−.

4.5 Normal form calculations

In this section we calculate a normal form for the hyperbolic surfaces. The
group acting on the surface is the group of conformal isometries of Gr2(V ).
With the action of this group we will bring the Taylor expansion of a param-
eterization of the surface into normal form. For generic surfaces the normal
form construction leads to a complete description of the invariants of the sur-
face. There is also a geometric interpretation of this normal form calculation
in terms of moving frames. This geometric picture is presented in [9, §2.3.4]
(hyperbolic surfaces) and [1, §4.3, 6.7] (elliptic surfaces) and can be used to
make a connection to the local invariants of partial differential equations.

Zero and first order. We want to bring a hyperbolic surface S in Gr2(V ) into
a normal form using the group GL(V ). We could also use the projective group
P GL(V ) since the scalar multiplications do not act on Gr2(V ). Since the group
acts transitively on the points in Gr2(V ) and on the hyperbolic tangent spaces
at that point, we can always choose a basis e1, e2, e3, e4 for V such that the
point L ∈ S is given by Re1 + Re2 and the tangent space to the surface at
L is given by the linear maps in Lin(L, V/L) that are diagonal matrices with
respect to the bases e1, e2 for L and e3 + L, e4 + L for V/L.

In the local coordinates introduced in Section 2.3 the surface can be parame-
terized as

(p, q) 7→ A =

 p q(p, s)

r(p, s) s

 . (10)
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The special point L corresponds to the zero matrix. We will bring the surface
in normal form by constructing a normal form for the Taylor expansions of
q(p, s) and r(p, s). The normalization at order zero was the choice of special
point L. This normalization corresponds to q(0, 0) = 0 and r(0, 0) = 0. The
normalization at order one was the choice of tangent space to S at L. This
corresponds to q = O(p, s)2, r = O(p, s)2.

The group GL(V ) can be parameterized by the 4 × 4 matrices

α̃ β̃

γ̃ δ̃

, with

α̃, β̃, γ̃, δ̃ all 2× 2-matrices. The subgroup H0 that leaves invariant L is given
by the matrices with γ̃ = 0. We compute the action of H0 on the tangent
space TLS. Let

g =

α̃ β̃

0 δ̃

 .

Then g acts on A as g · A = δ̃A(α̃ + β̃A)−1. On the tangent space to the
Grassmannian this induces the action X 7→ δ̃Xα̃−1. This conformal action is
transitive on the hyperbolic planes and we can always arrange that the tangent
space to the surface at L consists of diagonal matrices.

The structure group that leaves invariant L and TLS is the group H1 of ma-
trices α β̃

0 δ

 ∈ GL(V ), (11)

with either α, δ both diagonal or α, δ both anti-diagonal. This group has di-
mension 8 (or dimension 7 if we are working with the projective group) and 2
connected components.

Second order. The space of second order contacts to a hyperbolic surface for
which the first order part is in normal form, has dimension 6. The action of
the group H1 induces an action on this space by affine transformations. If we
use the local coordinates (10), then the first order normalizations correspond
to

q = q11p
2/2 + q12ps+ q22s

2/2 +O(p, s)3,

r = r11p
2/2 + r12ps+ r22s

2/2 +O(p, s)3.

The action of H1 on A is given by

A 7→ δA(α+ β̃A)−1 = δAα−1 − δAα−1β̃Aα−1 +O(p, s)3.
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We will calculate the action of the connected component of the group H1. The
action of the other component can be calculated in a similar fashion. We write

α =

α1 0

0 α2

 , β̃ =

β11 β12

β21 β22

 , δ =

δ1 0

0 δ2

 .

Working out this action using p, s as coordinates and only keeping terms of
order 2 and lower yields

A 7→ Ã =

 δ1α
−1
1 p− δ1α

−2
1 p2β11 δ1α

−1
2 q − δ1α

−1
2 α−1

1 β12ps

δ2α
−1
1 r − δ2α

−1
1 α−1

2 β21ps δ2α
−1
2 s− δ2α

−2
2 β22s

2

 +O(p, s)3.

We use p̃ = δ1α
−1
1 p − δ1α

−2
1 β11p

2 and s̃ = δ2α
−1
2 s − δ2α

−2
2 β22s

2 as new local
coordinates. Since p̃, s̃ are diagonal in p, s up to first order, this preserves the
normal form. We can express q̃ and r̃ in the new coordinates p̃, s̃; the final
result is

q̃11 = (α1)
2α−1

2 δ−1
1 q11, q̃12 = α1δ

−1
2 q12 − δ−1

2 β12, q̃22 = δ1δ
−2
2 α2q22,

r̃11 = δ2δ
−2
1 α1r11, r̃12 = α2δ

−1
1 r12 − δ−1

1 β21, r̃22 = α−1
1 (α2)

2δ−1
2 r22.

(12)

The action is indeed by affine transformations. Note that the group coefficients
β11, β22 do not appear in these expressions, so this part of the group does not
act on the second order contact. Using the group parameters β12, β21 we can
always arrange that q̃12 = r̃12 = 0. This normalization reduces the identity
component of the structure group to the group of matrices

g =

α β

0 δ

 ,

with α, δ ∈ D∗ and β ∈ D. Here D is the algebra of diagonal 2× 2-matrices.

In [1, Section 4.4] a normal form calculation is done for elliptic surfaces in
the Grassmannian. McKay finds similar normalizations, but formulates the
structure groups in terms of complex numbers. In [9] the hyperbolic surfaces
are analyzed with an equivalent to the complex number, the algebra of split-
complex numbers [12]. The algebra of split-complex numbers are isomorphic
to the algebra of diagonal 2× 2-matrices.

On the remaining four coefficients the generic orbits have dimension three.
There is one invariant given by

I =
q11r22
r11q22

. (13)
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The invariant is a rational function in the coefficients of the second order jets
of a hyperbolic surface. If r11q22 = 0 but q11r22 6= 0, then we say the invariant
takes the value ∞. If both q11r22 = 0 and r11q22 = 0, then this invariant is
not well-defined (by making small perturbations the invariant can have any
possible value).

Remark 19 We will analyze the action of the other component of H1 on the
second order coefficients. Let

g =



0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


∈ H1.

The action on a surface in local coordinates is

A =

 p q(p, s)

r(p, s) s

 7→

0 1

1 0


 p q(p, s)

r(p, s) s


0 1

1 0


−1

=

 s r(p, s)

q(p, s) p

 .

If we write p̃ = s, s̃ = p, q̃ = r, r̃ = q and assume that q, r are normalized and
of the form q = q11p

2/2 + q12ps+ q22s
2/2, r = r11p

2/2 + r12ps+ q22r
2/2, then

q̃11 = r22, q̃12 = r12, q̃22 = r11,

r̃11 = q22, r̃12 = q12, r̃22 = q11.

The invariant I is unchanged by this transformation, i.e.,

I =
q̃11r̃22
r̃11q̃22

=
q11r22
r11q22

.

So I is really invariant under the full group H1.

Third and higher order. We will conclude the normal form calculations by
showing that for generic structures (all terms q11, r22, r11, q22 unequal to zero, or
equivalently the invariant I is well-defined, non-zero and finite) the projective
group acts effectively. If we are at a generic point, then we can normalize the
second order coefficients to q12 = r12 = 0, q11 = r11 = q22 = 1 and r22 = I.
The structure group reduces to the group H3 consisting of matrices

g = φ

I β
0 I

 ∈ GL(V )

with φ ∈ R∗ and β = diag(β11, β22) ∈ D. The scalar factor φ is not important
since the scalar multiples of the identity are in the kernel of the action.
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The action on the third order part is relatively easy to calculate because the
structure group has reduced to such a small group. The action of g on the
matrix A is

g : A 7→ Ã = A(I + bA)−1 = A− AβA+ AβAβA+O(|A|)4. (14)

At the special point L we have A = 0 and the first order part of A is diagonal.
Therefore we can write A = A1 +A2 +A3 +O(p, s)4 with A1 =

(
p 0
0 s

)
∈ D and

the second and third order parts A2 and A3 anti-diagonal and homogeneous
of degree 2 and 3 in the parameters p, s, respectively. In a similar way we can
expand Ã into Ã1 + Ã2 + Ã3 +O(p̃, s̃)4, with Ã1 =

(
p̃ 0
0 s̃

)
.

After some calculations we find that p̃ = p−β11p
2 +O(p)2 and s̃ = s−β22s

2 +
O(s)2. The coefficients in the second order part are unchanged, so

Ã2 =

 0 q̃2

r̃2 0

 =

 0 q11p̃
2/2 + q22s̃

2/2

r11p̃
2/2 + r22s̃

2/2 0

 . (15)

Calculating the third order part we find that

Ã3 =


0

q111p̃
3/3 + q112p̃

2s̃

+ q122p̃s̃
2 + q222s̃

3/3

r111p̃
3/3 + r112p̃

2s̃

+ r122p̃s̃
2 + r222s̃

3/3
0



+

 0 q11β11p̃
3 + q22β22s̃

3

r11β11p̃
3 + r22β22s̃

3 0

 +

 0 p̃β11q̃2 + q̃2β22s̃

s̃β22r̃2 + r̃2β11p̃ 0

 .

For the action of the projective group on the third order coefficients to be
effective, it is necessary and sufficient that at least one out of the four co-
efficients q11, r11, q22 and r22 is non-zero. For a generic point this action is
effective. Hence by normalizing two suitable third order coefficients, the struc-
ture group reduces to the scalar multiplications. The remaining six third order
coefficients are invariants for the surface.

For higher order contact at each order n there are precisely 2(n + 1) more
derivatives of q and r. Since the structure group already reduced to the scalar
multiplications at order 3 (for generic structures), we find at each order pre-
cisely 2(n+ 1) additional invariants.

Example 20 (Invariants for geometrically flat surfaces)
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• In local coordinates for the Grassmannian define a geometrically flat sur-
face of type (2′, 2′) by the matrices p q(s)

r(p) s

 ,

with r(p) = r11p
2/2 + O(p3), q(s) = q22s

2/2 + O(s3). The points on the
characteristic line p = p0 all have the line l1(p0) = R(1, 0, p0, r(p0))

T in
common. The points on the characteristic line s = s0 all have the line
l1(s0) = R(0, 1, q(s0), s0)

T in common. If the surface is generic enough,
i.e., r11q22 6= 0, the invariant I is well-defined and equal to zero.

• In local coordinates define the surface S by the matrices of the form a 0

φ(a, b) b

 .

This is a geometrically flat surface of type (2′, 3′). All points on the char-
acteristic line b = constant have the line l1 = (0, 1, 0, 1)T in common. The
points in the lines a = constant are all contained in the 3-dimensional sub-
space spanned by the vectors (1, 0, a, 0)T, (0, 1, 0, 0)T, (0, 0, 0, 1)T. The spe-
cial point L defined in equation (6) is equal to R(0, 1, 0, 0)T+R(0, 0, 0, 1)T.
The coefficients r11, r12 and r22 are zero and hence I is not well-defined
since both the numerator and the denominator are zero.

• In local coordinates define the geometrically flat surface of type (3′, 3′) by p q(p)

r(s) s

 ,

with r(s) = r22s
2/2 + O(s)3, q(p) = q11p

2/2 + O(p3). If the surface is
generic enough, i.e., r22q11 6= 0, the invariant I is well-defined and has
value ∞.
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