Efficient rank calculation for matrices with a common submatrix

P.T. Eendebak*
April, 2016

Abstract

Rank calculation for matrices is important in many applications. In this article we descibe how
to perform efficient rank calculations for matrices that share a common submatrix. We use a QR
decomposition of the submatrix to improve the speed of the rank calculation of the matrices in the
list.

1 Introduction

In this paper we analyse the calculation of the rank of a series of matrices A; which have a number
of columns in common. By using QR-decompositions of the common submatrices we can significantly
speed up the rank calculations.

2 Theory

The rank of a matrix is defined as the maximum number of linearly independent column vectors of the
matrix [Lang, 1993]. Most methods to calculate the rank of a matrix are based on reduction to normal
form (e.g. row echelon form) or rank-revealing decompositions.

For example, the rank of a matrix is equal to the number of non-zero eigenvalues in a singular value
decomposition of the matrix. This makes it possible to calculate the rank of a matrix by performing a
SVD (singular value decomposition). Due to rounding errors the eigenvalues with absolute value smaller
than a threshold (typically of the order of 10~!%) are counted as zero. An alternatative method is to
calculate the QR decomposition of a matrix. See [Eig, 2016] for a list of rank revealing decompositions.

Most rank calculations are computationally expensive because the decompositions are expensive to
calculate. For a matrix of size m x n the complexity of a QR decompostion (using Householder QT
decomposition) is of order 2mn?.

Rank calculations for matrices with a common submatrix Let A; be a series of matrices of
the form [AB;] and suppose we want to calculate the rank of each of these matrices.

First perform a QR decomposition on the submatrix A:

AP = QR, (1)

with P a permutation matrix, () an orthogonal matrix and R an upper triangular matrix. The permuta-
tion matrix P is not stricly necessary, but allows for numerically more stable decompositions. We denote
the rank of the matrix A (which can be determined by the number of non-zero diagonal elements of R)
as rank(R) = ro.

For each matrix A; we calculate

X, =Q APt =QTAPT.

The rank of X; is equal to the rank of A; bacause both ) and P are invertible. Due to the QR
decomposition, the matrix X; is has the first rg in upper triangular form. See Figure 1 for an illustration

*Corresponding author. E-mail: pieter.eendebak@gmail.com



Data: List of arrays A; of size n x m, integer s
Result: Matrix rank for all of the arrays
Sort the list of arrays;
Calculate the QR decomposition of S = Ag[:,1: s];
for Each array A; in the list do
if A;[1:s]!= S then
Set S equal to A4;[1: s];
Calculate the QR decomposition of S;
Determine the rank rg of S}
end
Calculate X; = QT A, PT,
Let Y; be the submatrix of X; obtained by removing the first rg rows and first rg columns.;
Calculate the rank of A; as ro + rank(Y;);
end

Algorithm 1: Rank calculation for a list of arrays.

™, \

2

Figure 1: Shape of matrix X;.

of the matrix X;. Next, take the submatrix Y; of X; which is obtained by dropping the first ry rows and
the first ¢ columns

Y—i = Xi[ro 5 To } (2)
Then
rank(4;) = rank(X;) = rank(A4) + rank(Y;) = r¢ + rank(Y;). (3)

Instead of calculating the rank of A; directly we can determine the rank if Y;, which is much smaller in
size than the full matrix A;.

Method To efficiently calculate the rank of list of matrices we use the algorithm described in Algo-
rithm 1. The performance of the algorithm depends on how often the submatrix X;[1 : s] is equal to the
submatrix S for which the (Q R-decomposition has been calculated. It also depends on the values n, m
and s.

3 Results

We analyse the performance of our method on a set of arrays with 64 rows and 15 columns. This set is
a subset of the even-odd desgins O A(64, 3, 21%).



Method Marrays /s

SVD 353.8
LU decomposition 3042.4
QR decomposition 3547.619
QR-cache2 10321.493
QR-cache4 9750.001
QR-cache3 9557.565

Table 1: Results for rank calculations of second order interaction matrices of orthogonal arrays in
OA(64;3;219).

We compute the computation times for five different methods to calculate the rank. All methods
have been implemented in C++ with the Eigen [Guennebaud et al., 2010] library. The code is available
in the Orthogonal Array Package [Eendebak, 2013] (example code in oaranktest.cpp).

e SVD Calculate the SVD of the matrix and count the non-zero eigenvalues.

e LU Calculate the LU-decomposition of the matrix using Eigen.

e QR Calculate the QR-decomposition of the matrix.

e QR-sub2 Calculate the rank using the algorithm in Algorithm 1 with parameter s = m — 2.
e QR-sub3 Calculate the rank using the algorithm in Algorithm 1 with parameter s = m — 3.
e QR-sub4 Calculate the rank using the algorithm in Algorithm 1 with parameter s = m — 4.

The resulting computation speeds are listed in Table 1. The computation speed is given in million arrays
per second. The calculations are done on a Intel Core i7-4710MQ processor.

4 Discussion

Of the the methods that do not use the common submatrices the QR decomposition is the fastest. Our
method using the common substructure of the matrices is a factor 2.5-3 faster. This is possible because
the arrays in the dataset often only differ in the last few columns. The parameter s is a trade-off between
beter efficiency for calculating the rank (higher s) and preventing recalculation of the QR decompostion
of S (lower s). For this particular dataset the value of s is not very critical.

For other datasets the improvement in calculation speed may be better or worse, depending on the
characteristics of the dataset.

References

[Eig, 2016] (2016). Catalogue of decompositions offered by eigen.
[Eendebak, 2013] Eendebak, P. T. (2013). The Orthogonal Array package. Technical report.

[Guennebaud et al., 2010] Guennebaud, G., Jacob, B., et al. (2010). Eigen v3.
http://eigen.tuxfamily.org.

[Lang, 1993] Lang, S. (1993). Algebra. Addison-Wesley, Menlo Park Cal.



	Introduction
	Theory
	Results
	Discussion
	Bibliography

