
Efficient rank calculation for matrices with a common submatrix

P.T. Eendebak∗

April, 2016

Abstract

Rank calculation for matrices is important in many applications. In this article we descibe how
to perform efficient rank calculations for matrices that share a common submatrix. We use a QR
decomposition of the submatrix to improve the speed of the rank calculation of the matrices in the
list.

1 Introduction

In this paper we analyse the calculation of the rank of a series of matrices Ai which have a number
of columns in common. By using QR-decompositions of the common submatrices we can significantly
speed up the rank calculations.

2 Theory

The rank of a matrix is defined as the maximum number of linearly independent column vectors of the
matrix [Lang, 1993]. Most methods to calculate the rank of a matrix are based on reduction to normal
form (e.g. row echelon form) or rank-revealing decompositions.

For example, the rank of a matrix is equal to the number of non-zero eigenvalues in a singular value
decomposition of the matrix. This makes it possible to calculate the rank of a matrix by performing a
SVD (singular value decomposition). Due to rounding errors the eigenvalues with absolute value smaller
than a threshold (typically of the order of 10−14) are counted as zero. An alternatative method is to
calculate the QR decomposition of a matrix. See [Eig, 2016] for a list of rank revealing decompositions.

Most rank calculations are computationally expensive because the decompositions are expensive to
calculate. For a matrix of size m × n the complexity of a QR decompostion (using Householder QT
decomposition) is of order 2mn2.

Rank calculations for matrices with a common submatrix Let Ai be a series of matrices of
the form [ABi] and suppose we want to calculate the rank of each of these matrices.

First perform a QR decomposition on the submatrix A:

AP = QR, (1)

with P a permutation matrix, Q an orthogonal matrix and R an upper triangular matrix. The permuta-
tion matrix P is not stricly necessary, but allows for numerically more stable decompositions. We denote
the rank of the matrix A (which can be determined by the number of non-zero diagonal elements of R)
as rank(R) = r0.

For each matrix Ai we calculate

Xi = Q−1AiP
−1 = QTAiP

T .

The rank of Xi is equal to the rank of Ai bacause both Q and P are invertible. Due to the QR
decomposition, the matrix Xi is has the first r0 in upper triangular form. See Figure 1 for an illustration

∗Corresponding author. E-mail: pieter.eendebak@gmail.com

1



Data: List of arrays Ai of size n×m, integer s
Result: Matrix rank for all of the arrays
Sort the list of arrays;
Calculate the QR decomposition of S = A0[:, 1 : s];
for Each array Ai in the list do

if Ai[1 : s] ! = S then
Set S equal to Ai[1 : s];
Calculate the QR decomposition of S;
Determine the rank r0 of S;

end

Calculate Xi = QTAiP
T ;

Let Yi be the submatrix of Xi obtained by removing the first r0 rows and first r0 columns.;
Calculate the rank of Ai as r0 + rank(Yi);

end
Algorithm 1: Rank calculation for a list of arrays.

Xi =





























d1

d2

∅

. . .

dr0

0 0 . . . 0

0 . . . 0

.

.

.
.
.
.

0 . . . 0





























Yi

Figure 1: Shape of matrix Xi.

of the matrix Xi. Next, take the submatrix Yi of Xi which is obtained by dropping the first r0 rows and
the first r0 columns

Yi = Xi[r0 :, r0 :]. (2)

Then

rank(Ai) = rank(Xi) = rank(A) + rank(Yi) = r0 + rank(Yi). (3)

Instead of calculating the rank of Ai directly we can determine the rank if Yi, which is much smaller in
size than the full matrix Ai.

Method To efficiently calculate the rank of list of matrices we use the algorithm described in Algo-
rithm 1. The performance of the algorithm depends on how often the submatrix Xi[1 : s] is equal to the
submatrix S for which the QR-decomposition has been calculated. It also depends on the values n, m
and s.

3 Results

We analyse the performance of our method on a set of arrays with 64 rows and 15 columns. This set is
a subset of the even-odd desgins OA(64, 3, 215).

2



Method Marrays /s

SVD 353.8
LU decomposition 3042.4
QR decomposition 3547.619
QR-cache2 10321.493
QR-cache4 9750.001
QR-cache3 9557.565

Table 1: Results for rank calculations of second order interaction matrices of orthogonal arrays in
OA(64; 3; 215).

We compute the computation times for five different methods to calculate the rank. All methods
have been implemented in C++ with the Eigen [Guennebaud et al., 2010] library. The code is available
in the Orthogonal Array Package [Eendebak, 2013] (example code in oaranktest.cpp).

• SVD Calculate the SVD of the matrix and count the non-zero eigenvalues.

• LU Calculate the LU-decomposition of the matrix using Eigen.

• QR Calculate the QR-decomposition of the matrix.

• QR-sub2 Calculate the rank using the algorithm in Algorithm 1 with parameter s = m− 2.

• QR-sub3 Calculate the rank using the algorithm in Algorithm 1 with parameter s = m− 3.

• QR-sub4 Calculate the rank using the algorithm in Algorithm 1 with parameter s = m− 4.

The resulting computation speeds are listed in Table 1. The computation speed is given in million arrays
per second. The calculations are done on a Intel Core i7-4710MQ processor.

4 Discussion

Of the the methods that do not use the common submatrices the QR decomposition is the fastest. Our
method using the common substructure of the matrices is a factor 2.5–3 faster. This is possible because
the arrays in the dataset often only differ in the last few columns. The parameter s is a trade-off between
beter efficiency for calculating the rank (higher s) and preventing recalculation of the QR decompostion
of S (lower s). For this particular dataset the value of s is not very critical.

For other datasets the improvement in calculation speed may be better or worse, depending on the
characteristics of the dataset.

References

[Eig, 2016] (2016). Catalogue of decompositions offered by eigen.

[Eendebak, 2013] Eendebak, P. T. (2013). The Orthogonal Array package. Technical report.

[Guennebaud et al., 2010] Guennebaud, G., Jacob, B., et al. (2010). Eigen v3.
http://eigen.tuxfamily.org.

[Lang, 1993] Lang, S. (1993). Algebra. Addison-Wesley, Menlo Park Cal.

3


	Introduction
	Theory
	Results
	Discussion
	Bibliography

