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Abstract: In this paper we investigate the use of visual tools 

for efficient video search. The different techniques have 

been implemented in a demo called iDash and several of 

the techniques are actively used by the Dutch police force 

in the fight against child pornography. 
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1 INTRODUCTION 

With the arrival of the digital age, police in all countries 

dealing with child abuse and child pornography have found 

themselves facing new challenges. Broadband internet and 

affordable storage media have contributed to an explosion in 

the quantity of multimedia data confiscated by police as part 

of child pornography inquiries. In The Netherlands alone the 

amount of data confiscated by the police has increased from 

4.5 to 152 terabytes between 2003 and 2006. The task of 

sifting through confiscated case material to identify child 

pornography can be tedious, time consuming, emotionally 

taxing and difficult. Increasingly, technologically-savvy 

pedophiles attempt to outwit law enforcement agencies by 

using technology, such as image-processing, video-editing and 

encryption software, to hide their tracks. The police have 

responded by taking the fight in the only direction possible, 

into the digital domain.  

The main obstacle to be faced by the investigators is the huge 

amount of data that has to be inspected in order to find 

conclusive evidence for child abuse. This has to be achieved 

in the very limited time available to keep a person in custody 

without charge. In order to address these problems, suitable 

technological support is essential. During the last years TNO, 

the Dutch Forensic Institute (NFI), the University of 

Amsterdam and ZiuZ have worked together to develop tools 

for analyzing digital images and video.  

Technology that has been developed so far consists of 

content-based image analysis tools (e.g. face detection, and 

skin or nudity detection), video fingerprinting and efficient 

video and image retrieval techniques that treat images 

analogical to text.  

In this paper we describe the theoretical background and the 

practical benefits of these techniques and we propose their 

integration into a visual workbench called iDash tailored to 

forensic image analysis. 

 

2 GENERIC OBJECT DETECTION  

 

One topic of ongoing research is matching of specific objects 

and locations in large (usually unlabelled) image collections. 

A tool that allows large image databases to be visually 

'googled' would help the police to link crimes by matching 

crime scenes. For example, a photo taken inside a suspect’s 

home could be compared to child pornography databases. The 

key idea behind such a tool is to automatically detect salient 

(prominent, distinguishing) patches in an image and describe 

each patch independently to the viewing angle, distance to the 

camera and the acquisition conditions. In this way, finding the 

correspondences between two photos of the same scene is 

facilitated regardless of the transformations relating them. 

A framework for generic object detection was pioneered by 

Schmid and Mohr [2] and can be summarized as: detect, 

describe, match. The three steps will be described in more 

detail below. 

2.1 Detection: keypoints and salient regions 

In many images there are regions which possess some 

distinguishing, invariant and stable property which can be 

detected independently with high repeatability. This property 

makes them a good choice for the representative image 

patches whose correspondence is sought. The detected salient 

regions should change invariantly with the transformation 

relating the two images [3,4]. The salient patches can be 

detected either as groups of image pixels in the vicinity of a 

keypoint or directly as salient regions. 

Keypoints in images that can be detected repeatedly are 

mostly related to corner like structures. The Harris corner 

detector [1] (and variations) is a basic building block for many 

detectors. The Harris corner detector itself however is not 

scale or affine invariant. To introduce scale invariance often 

scale-spaces are introduced. Inspired by this, Lowe [6] 

proposed a method for extracting keypoints which are 

invariant to image scaling and rotation and partly invariant to 



 

change in illumination and camera viewpoint. This approach 

is known as the Scale Invariant Feature Transform (SIFT) as it 

transforms the image data into scale-invariant coordinates 

relative to local features. The SIFT features are the scale-

space extrema, subject to a stability criterion (for details the 

reader is referred to [6]).  

Although the SIFT algorithm performs very well it is not 

invariant to affine transformations. Since affine 

transformations appear with changes of the camera viewpoint 

several people have developed affine invariant detectors. A 

comparison of six state-of-the-art affine covariant region 

detectors is presented in [4]. For structured scenes, containing 

homogeneous regions with distinctive boundaries (as usually 

are the indoor scenes), the MSER (Maximally Stable Extremal 

Region) and IBR (intensity-based region) detectors perform 

best as they analyze the image isocontours directly. 

Similarly to MSER, we proposed to analyze image 

isocontours by decomposing the image into binary cross-

sections and computing two main types of saliency maps for 

each. The first type are the regions darker/brighter than their 

surroundings (similarly to MSER), and we propose a new type 

of salient regions manifested as significant irregularities on 

strong contrast borders. They are combined into a final map 

based on the stability of their support over the cross-sections.  

Our detector uses morphological operators (for details the 

reader is referred to [7]), hence the name Morphology-based 

Stable Salient Regions (MSSR) detector. We have shown [7] 

that while the MSSR achieved comparable repeatability and 

matching performance to MSER and IBR, it is best in 

identifying perceptually salient regions. In Figure 1, bottom 

we have plotted all matched regions from the scene and the 

ones satisfying the spatial consistency contraints are shown 

connected with lines.  

 

2.2 Region descriptors 

In a second step of a generic matching application, the 

detected regions are encoded using a robust (invariant to 

geometric and photometric modifications) descriptor, and 

matching between the descriptors is performed. For the case 

of keypoints the descriptor is computed over the 

neighbourhood of the point, while in the case of the salient 

regions, the image values within the region (after 

normalisation) is used. A popular choice is the SIFT 

descriptor (usually of dimension 128) computed over the 

normalised regions- a 3D histogram of gradient location and 

orientations [6]. SIFT descriptors produce the best 

performance for different scene types, geometric and 

photometric transformations [5].  

2.3 Matching 

Descriptors are usually matched by using distance metrics (e.g.  

Euclidean or Mahalanobis distance) and selecting pairs with 

the shortest distance (nearest neighbour method). Since 

nearest neighbour queries in high dimensional spaces always 

have a worst-case quadratic running time, various 

approximations have been developed. Several geometric 

constraints can be added to further improve the matching. In 

Figure 1 we have plotted detected region, matches using a 

descriptor and the final matches after adding a spatial 

consistency constraint. 

 

 

Figure 1: MSSR region detection. On top all detected regions, in 
the bottom corresponding regions and spatially consist matches 

 

2.4 Visual words 

Breaking down an image into an invariant set of image 

patches allows for applying insights from text retrieval. The 

image patches can be thought of as 'visual words' and a set of 

images can be treated as a set of 'documents' in which sets of 

visual words can be searched. The detected regions together 

with their descriptor are called visual words. Just as a normal 

text consists of words at specific locations, an image consists 

of visual words spread throughout this document. Using the 

analogy we can transfer search methods from text-retrieval 

into the visual domain. 

 

Figure 2: Query by example 

In text searches several words are combined into groups. For 

example ‘color’, ‘colour’ and ‘colors’ are all combined into 

the same concept. In the visual domain this corresponds to 

grouping salient regions with similar descriptors into clusters. 



 

Some of these clusters are not very useful for searching. For 

example when comparing English text the words `the’ and 

`and’ are usually omitted from the search. The same can be 

done by creating stoplists for visual words that are not very 

discriminative.  

Using these techniques it is possible to search effectively 

through large image sets to locate an object of interest or a 

particular scene. In Figure 2 the result is shown of a query 

using an example image of a food box. The results contain not 

only the original image, but also many variations. 

 

3 SKIN DETECTION 

 

For the task of analyzing material containing (child) 

pornography a skin detector (or nudity detector) is very 

helpful. TNO and ZiuZ have developed a skin detector that is 

currently used in 70% of the Dutch police regions 

 

3.1 Overview 

Pixel-based skin detection involves the automated recognition 

of skin pixels in natural images, without any knowledge about 

texture, structure, or other types of aggregate information. The 

complexity of this problem arises partially from the wide 

color space of skin. Factors like illumination and color casts 

further add to the complexity of the problem. Usually, skin 

detection is performed in normalized color spaces.  The choice 

for a suitable color space cannot be made independent of the 

type of classifier used.  Choices here are mainly between 

parametric methods (such as Gaussian Mixture Models, or 

Maximum Entropy Classifiers ([14]) and non-parametric 

methods such as histogram-based Naïve Bayes classifiers.  As 

noted by [11], the Naïve Bayes classifier is invariant with 

respect to color spaces, which is the reason why we adopted it 

in our work.  

The Naïve Bayes skin classifier (or skin probability map) 

basically consists of a 3d-histogram and two priors, the 

probabilities of observing skin and non-skin. The 3d-

histogram describes the chance of observing either skin or 

non-class given a certain RGB combination in the cells of the 

histogram. Every RGB combination in the training data is 

stored in a 3d-histogram. Apart from this, suitable smoothing 

techniques need to be applied to account for missing RGB 

combinations in the test data.  

In order to cope with the problem of sparsity (unseen 

combinations of RGB values in the test data), the value range 

of a color dimension (red, green, blue) can be partitioned into 

a number of bins, after which the probabilities of observing 

skin or non-skin for a specific three-dimensional bin can be 

computed. For binning, several options are open, like fixed 

size binning, or minimum description based binning [12]. 

During testing, an image is again processed pixel by pixel. 

Every pixel is allocated to a certain 3d-bin, and the probability 

of skin for the bin the RGB combination is allocated to, is 

computed as follows.  
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Alternatively, a pixel-wise Naïve Bayes classifier would 

consist of  a simple thresholded decision rule mapping the bin 

for every pixel pi in an image to a 0 (non-skin) or 1 (skin), 

which is in fact the classifier we used in our work. The 

threshold was estimated on heldout development data. 

 

 

Figure 3: Skin detection applied to 4 random images 

 

3.2 Experiments 

In our experiments, we trained on a subset of 3000 images of 

the Compaq skin database [16]. This database consists of 4670 

skin images and 8964 non-skin images supplied with 

manually crafted skin masks. These masks describe the 

partitioning of an image in skin and non-skin parts, from 

which the skin/non-skin probabilities can be estimated. We 

experimented with MDL based binning [12] but in the end 

opted for a simpler uniform binning in combination with 

smoothing. At the same with we experimented with pre-

processing the images with a color correction algorithm. 

For performance evaluation we consider the pixel 

classification performance and the image classification 

performance. For the pixel classification we simply count the 

number of pixels that are classified correct or incorrect as skin 

or non-skin. The results are presented as a ROC (Receiver 

Operator Curve) plot. As can be seen from Figure 4, binning 



 

the skin data seems to consistently improve the performance a 

little bit, especially for higher true positive rates. 

 

 

Figure 4: ROC for pixel classification (left) and entire image 
classification (right) 

 

We implemented the skin filter in a prototypical image 

ranking system, ranking images on the basis of the aggregate 

pixel skin probabilities.  Investigators can use this type of 

facility to focus on skin images first when browsing through a 

large repository of confiscated images, a process that benefits 

from high precision. If in the top N ranked images a (any) 

child pornography image is present, the suspect will be subject 

to further prosecution without further ado. Low precision 

would demote the workflow to manual inspection, in the worst 

case of all images.  In Figure 5 the ROC curve is plotted for 

the skin detection algorithm applied to entire images, with or 

without color correction and uniform binning. 

 

4 VIDEO FINGERPRINTING  

 

As already noted the task of analyzing all confiscated material 

is a huge task. Over the years the police force has build up a 

database containing illegal material (both images and video).  

New suspect material is first checked against already 

processed and categorized material with MD5 checksums. But 

often this test fails because of small transformations such as 

reencoding, logo insertion, lossy compression etc. 

For identification purposes sometimes watermarking is used, 

i.e. the insertion of a hidden signal in the video. However 

insertion of the watermark has to be done by the producer of 

the material and this is not an option in the case of child 

pornography. Hence there arises the need for identification of 

videos based on the content of the video. These methods are 

generally called video fingerprinting. 

Recently video printing technology has been under active 

development for digital rights management and copyright 

infringement applications [15]. The application of video 

fingerprinting to forensic research is quite new, although the 

first applications are appearing [13]. 

 

4.1 Overview 

It is natural to make a distinction between CBCD (content-

based copy detection, sometimes called near-copy detection) 

and CBVR (content-based video retrieval). With CBCD the 

goal is to find copies of videos (with small distortions). With 

CBVR the goal is to find videos with a (for humans) similar 

content. For forensic applications both applications are 

relevant and in practice video fingerprinting systems For 

example 2 videos of  2 different football matches should not 

be matched in CBCD, but they are both about football they 

can be matched within CBVR.  

 

 

Figure 5: Similar videos retrieved by the TNO video fingerprinting 
system. Top match is CBCD, bottom match is CBVR.  

 

4.2 Results 

Since video fingerprinting is not new, the goal is not to 

develop completely new technology. Rather we want to 

identify the specific problems that arise in the context of child 

pornography. 

One very specific problem is the huge legacy of video tapes 

(analog material) that is digitized for storage and transmission 

through the internet. Often this analog material has very 

specific distortions (noise, synchronization problems). Also 

during analogue to digital conversions it happens often that 

frames are missing from the data stream. This means that the 

video fingerprinting technique used must be robust to a certain 

percentage of missing frames. Related to this is the fact that 

child pornography material is often of relatively low quality as 

compared to commercial movies. Material is often created 

with inexpensive home cameras and distribution is done 

mainly over the internet where high compression is desirable. 

Further, quite often, different videos are compiled to new 

videos. This implies that fingerprinting techniques have to 

deploy local, time-stamped feature instead of global features 

(per video). 

With these requirements in mind and the fact that video 

fingerprinting has to be applied to extremely large datasets, 

we have chosen for a technique that is easy to implement and 

is known to produce adequate performance. For local features 



 

we use binary fingerprints derived from the individual frames. 

Each frame is divided into blocks and for each block the mean 

greyscale intensity is calculated, see Figure 6 below. 

 

Figure 6: Haar based fingerprint 

These binary fingerprints are indexed per video. Retrieval is 

done in several stages. From the new video material 

fingerprints are calculated. With these fingerprints and the 

index an initial search is performed. The result is a list of 

tentative matches. Each of these matches is then subjected to a 

more detailed comparison using fingerprints of both the 

database and the query video. Finally all the results are 

combined by removing duplicate results and combining 

overlapping results. 
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Figure 7: TNO video fingerprinting system 

 

5 GENERIC SEMANTIC INDEXING 

 

When looking at detectors for indexing child pornography 

data it is clear that some special detectors like the skin 

detector just described are important. However, when an 

investigator is searching through a large collection of videos 

to find any clue of victims or suspects a large set of concept 

detectors is useful. However, it is not feasible to develop 

specific detectors for each of them. Therefore, in addition to 

specific detectors we employ generic detector schemes.  

The visual indexing process starts with computing a high-

dimensional feature vector for each shot. In our system we use 

the Wiccest features as introduced in [10]. Wiccest features 

combine color invariance with natural image statistics. Color 

invariance aims to remove accidental lighting conditions, 

while natural image statistics efficiently represent image data.  

Computing visual features and similarity is common practice 

in all interactive content based video retrieval systems. We 

now move on to the more specific topic of adding semantic 

indexing to the data, which is the process of associating every 

shot in the database with a measure of presence of the given 

concept. The central assumption in our semantic indexing 

architecture is that any video which is made with a purpose is 

the result of an authoring process. When we want to extract 

semantics from a digital broadcast video this authoring 

process needs to be reversed. For authoring-driven analysis 

we proposed the semantic pathfinder [9], composed of three 

analysis steps. It follows the reverse authoring process. Each 

analysis step in the path detects semantic concepts. In 

addition, one can exploit the output of an analysis step in the 

path as the input for the next one. The semantic pathfinder 

starts in the content analysis step. In this analysis step, we 

follow a data-driven approach, using both visual and textual 

information, of indexing semantics. The style analysis step is 

the second analysis step. Here we tackle the indexing problem 

by viewing a video from the perspective of production. 

Finally, to enhance the indexes further, in the context analysis 

step, we view semantics in context. One would expect that 

some concepts, like vegetation, have their emphasis on 

content where the style (of the camera work that is) and 

context (of concepts like graphics) do not add much. In 

contrast, more complex events, like people walking, profit 

from incremental adaptation of the analysis to the intention of 

the author. The virtue of the semantic pathfinder is its ability 

to find the best path of analysis steps on a per-concept basis. 

The generic indexing structure has been used to create a 

lexicon of 101 concepts. Elements in the lexicon range from 

specific persons to generic classes of people, generic settings, 

specific and generic objects etc. See [9] for a complete list. 

The quality of the results varies widely. Some of the concepts 

have good accuracy, while some perform very poorly. There 

are two factors influencing the accuracy. The variety in 

appearance of the object and settings and whether the set of 

training samples supplied sufficiently covers this variety. 

 

6 THE I-DASH APPLICATION 

 

The different search technologies described in the previous 

sections have been integrated into a visual workbench called 

the Investigators Dashboard, or I-Dash for short. In this 

dashboard some additional novel techniques have been 

implemented which are described in the next paragraphs. 

 

6.1 Thread based video browsing 

All of the search techniques defined in the previous sections 

are based on rankings either by pre-ranking data based on 

semantic detectors, or example-driven: given some current 

focal shot, show near copies or video containing the same 

object. To allow for effective browsing it is advantageous to 

give the user the opportunity of browsing through all of these 



 

dimensions.  To do so we have introduced the notion of thread 

based browsing [8]. A thread is a linked sequence of shots in a 

specified order, based upon an aspect of their content. We 

define several thread types in our system. The most used form 

of threads is the query result thread: the result of a user 

constructed query. In this case the shots are linked because 

they all originate as results from the same query. Other forms 

of threads include visual threads, semantic threads, top-rank 

threads, textual threads and the time thread. The visual thread 

links shots together which share the same visual 

characteristics, so that shots next to each other are also 

visually similar. The semantic thread links shots together 

based on their detected semantic concept scores, so that shots 

next to each other both contain the same set of semantic 

concepts. The textual thread links shots to each other which 

contain the same ASR text. The time thread can be compared 

to the time line of a video.  A special form of thread is the top-

rank thread, which just connects the top N shots from every 

concept to each other; so that one thread length N is generated 

for every concept. The search engine supports two modes for 

displaying results. Both display modes show an active focal 

shot, and a collection of threads relevant to the focal shot. 

Both display modes use a fixed layout where the focal point is 

always the largest most centered shot on the screen, and all 

relevant threads are shown in a star formation around it. The 

user has only to choose between two actions: select, or 

bookmark, the current focal shot as a valid result, or switch 

focus to any of the neighbouring shots.  As a third option the 

user can also use the mouse to directly bookmark any visible 

shot by clicking on it. 

The CrossBrowser only displays the initial query results and 

the time thread, and thereby limits the user in the browsable 

dimensions. The RotorBrowser shows all relevant threads, 

including time, for each shot. The CrossBrowser allows 

movement through the initial query results, and for each result 

limited movement through the time thread. To preserve 

context the user is not allowed to leave the initial query results. 

The RotorBrowser does allow the user to leave the initial 

query result set so the user can browse through anything that 

catches his interest. To prevent the user from “getting lost” a 

system of hotkeys was added to enable quick jumping back to 

the last initial query result. A screenshot of the CrossBrowser 

is shown in Figure 8. 

6.2 Intelligent video playback 

Playing a normal video search for events is not very efficient. 

For a video collection of 100 hours this would require an 

investigator to watch 100 hours of video. However, the human 

visual system is capable of processing much more data at the 

same time. In I-Dash video is played in six windows at the 

same time, at twice or more times the normal speed. In this 

way 1 hour of video can be reviewed in only 5 minutes or less. 

 

 

Figure 8: I-Dash with CrossBrowser 

 

7 THE I-DASH PROJECT 

 

The fight against production and distribution of child 

pornography by applying digital video analysis will be 

continued at the European level. The EU safer internet plus 

programme has funded the 2 year project IDASH with the 

following partners: University of Amsterdam, TNO, ZiuZ, 

University of Surrey, INESC and 5 EU police organisations as 

end users.  

The project takes the I-dash visual workbench as a starting 

point. It will be installed at the start of the project at all end-

user sites. In the mean time, applied R&D will adapt and 

improve the latest technology to this specific domain. The 

police will not only get a working solution right from the start, 

but competitive state-of-the-art methods in the course of the 

project as well. 

The objectives are the development of an operational system 

capable of handling thousands of hours of videos potentially 

containing child pornography. Further, it will establish a 

European database with known child pornography and a 

standard for efficient data exchange between the various 

national police forces. The project will impact the European 

fight against child pornography by making investigators more 

efficient, and improving national and international 

collaboration. 

 

8 CONCLUSIONS 

Now that so many people have easy access to information and 

software the fight between law enforcement agencies and 

criminals is becoming more symmetrical. The latest research 

into image processing and information mining is crucial for 

keeping the police one step ahead of pedophiles. As new 

technology is employed in the fight against child pornography 

the difference between victory and defeat lies in deploying 

superior knowledge.  
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