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Abstract: In this paper we investigate the use of visual tools 
for efficient video search. The different techniques have 
been implemented in a demo called iDash and several of 
the techniques are actively used by the Dutch police force 
in the fight against child pornography. 
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1 INTRODUCTION 
With the arrival of the digital age, police in all countries 
dealing with child abuse and child pornography have found 
themselves facing new challenges. Broadband internet and 
affordable storage media have contributed to an explosion in 
the quantity of multimedia data confiscated by police as part 
of child pornography inquiries. In The Netherlands alone the 
amount of data confiscated by the police has increased from 
4.5 to 152 terabytes between 2003 and 2006. The task of 
sifting through confiscated case material to identify child 
pornography can be tedious, time consuming, emotionally 
taxing and difficult. Increasingly, technologically-savvy 
pedophiles attempt to outwit law enforcement agencies by 
using technology, such as image-processing, video-editing and 
encryption software, to hide their tracks. The police have 
responded by taking the fight in the only direction possible, 
into the digital domain.  

The main obstacle to be faced by the investigators is the huge 
amount of data that has to be inspected in order to find 
conclusive evidence for child abuse. This has to be achieved 
in the very limited time available to keep a person in custody 
without charge. In order to address these problems, suitable 
technological support is essential. During the last years TNO, 
the Dutch Forensic Institute (NFI), the University of 
Amsterdam and ZiuZ have worked together to develop tools 
for analyzing digital images and video.  

Technology that has been developed so far consists of 
content-based image analysis tools (e.g. face detection, and 
skin or nudity detection), video fingerprinting and efficient 
video and image retrieval techniques that treat images 
analogical to text.  

In this paper we describe the theoretical background and the 
practical benefits of these techniques and we propose their 
integration into a visual workbench called iDash tailored to 
forensic image analysis. 

 

2 GENERIC OBJECT DETECTION  
 

One topic of ongoing research is matching of specific objects 
and locations in large (usually unlabelled) image collections. 
A tool that allows large image databases to be visually 
'googled' would help the police to link crimes by matching 
crime scenes. For example, a photo taken inside a suspect’s 
home could be compared to child pornography databases. The 
key idea behind such a tool is to automatically detect salient 
(prominent, distinguishing) patches in an image and describe 
each patch independently to the viewing angle, distance to the 
camera and the acquisition conditions. In this way, finding the 
correspondences between two photos of the same scene is 
facilitated regardless of the transformations relating them. 

A framework for generic object detection was pioneered by 
Schmid and Mohr [2] and can be summarized as: detect, 
describe, match. The three steps will be described in more 
detail below. 

2.1 Detection: keypoints and salient regions 
In many images there are regions which possess some 
distinguishing, invariant and stable property which can be 
detected independently with high repeatability. This property 
makes them a good choice for the representative image 
patches whose correspondence is sought. The detected salient 
regions should change invariantly with the transformation 
relating the two images [3,4]. The salient patches can be 
detected either as groups of image pixels in the vicinity of a 
keypoint or directly as salient regions. 

Keypoints in images that can be detected repeatedly are 
mostly related to corner like structures. The Harris corner 
detector [1] (and variations) is a basic building block for many 
detectors. The Harris corner detector itself however is not 
scale or affine invariant. To introduce scale invariance often 
scale-spaces are introduced. Inspired by this, Lowe [6] 
proposed a method for extracting keypoints which are 
invariant to image scaling and rotation and partly invariant to 



 

change in illumination and camera viewpoint. This approach 
is known as the Scale Invariant Feature Transform (SIFT) as it 
transforms the image data into scale-invariant coordinates 
relative to local features. The SIFT features are the scale-
space extrema, subject to a stability criterion (for details the 
reader is referred to [6]).  

Although the SIFT algorithm performs very well it is not 
invariant to affine transformations. Since affine 
transformations appear with changes of the camera viewpoint 
several people have developed affine invariant detectors. A 
comparison of six state-of-the-art affine covariant region 
detectors is presented in [4]. For structured scenes, containing 
homogeneous regions with distinctive boundaries (as usually 
are the indoor scenes), the MSER (Maximally Stable Extremal 
Region) and IBR (intensity-based region) detectors perform 
best as they analyze the image isocontours directly. 

Similarly to MSER, we proposed to analyze image 
isocontours by decomposing the image into binary cross-
sections and computing two main types of saliency maps for 
each. The first type are the regions darker/brighter than their 
surroundings (similarly to MSER), and we propose a new type 
of salient regions manifested as significant irregularities on 
strong contrast borders. They are combined into a final map 
based on the stability of their support over the cross-sections.  

Our detector uses morphological operators (for details the 
reader is referred to [7]), hence the name Morphology-based 
Stable Salient Regions (MSSR) detector. We have shown [7] 
that while the MSSR achieved comparable repeatability and 
matching performance to MSER and IBR, it is best in 
identifying perceptually salient regions. In Figure 1, bottom 
we have plotted all matched regions from the scene and the 
ones satisfying the spatial consistency contraints are shown 
connected with lines.  

 

2.2 Region descriptors 
In a second step of a generic matching application, the 
detected regions are encoded using a robust (invariant to 
geometric and photometric modifications) descriptor, and 
matching between the descriptors is performed. For the case 
of keypoints the descriptor is computed over the 
neighbourhood of the point, while in the case of the salient 
regions, the image values within the region (after 
normalisation) is used. A popular choice is the SIFT 
descriptor (usually of dimension 128) computed over the 
normalised regions- a 3D histogram of gradient location and 
orientations [6]. SIFT descriptors produce the best 
performance for different scene types, geometric and 
photometric transformations [5].  

2.3 Matching 
Descriptors are usually matched by using distance metrics (e.g.  
Euclidean or Mahalanobis distance) and selecting pairs with 
the shortest distance (nearest neighbour method). Since 
nearest neighbour queries in high dimensional spaces always 
have a worst-case quadratic running time, various 

approximations have been developed. Several geometric 
constraints can be added to further improve the matching. In 
Figure 1 we have plotted detected region, matches using a 
descriptor and the final matches after adding a spatial 
consistency constraint. 

 

 
Figure 1: MSSR region detection. On top all detecte d regions, in 
the bottom corresponding regions and spatially cons ist matches 

 

2.4 Visual words 
Breaking down an image into an invariant set of image 
patches allows for applying insights from text retrieval. The 
image patches can be thought of as 'visual words' and a set of 
images can be treated as a set of 'documents' in which sets of 
visual words can be searched. The detected regions together 
with their descriptor are called visual words. Just as a normal 
text consists of words at specific locations, an image consists 
of visual words spread throughout this document. Using the 
analogy we can transfer search methods from text-retrieval 
into the visual domain. 

 
Figure 2: Query by example 

In text searches several words are combined into groups. For 
example ‘color’, ‘colour’ and ‘colors’ are all combined into 
the same concept. In the visual domain this corresponds to 
grouping salient regions with similar descriptors into clusters. 



 

Some of these clusters are not very useful for searching. For 
example when comparing English text the words `the’ and 
`and’ are usually omitted from the search. The same can be 
done by creating stoplists for visual words that are not very 
discriminative.  

Using these techniques it is possible to search effectively 
through large image sets to locate an object of interest or a 
particular scene. In Figure 2 the result is shown of a query 
using an example image of a food box. The results contain not 
only the original image, but also many variations. 

 

3 SKIN DETECTION 
 

For the task of analyzing material containing (child) 
pornography a skin detector (or nudity detector) is very 
helpful. TNO and ZiuZ have developed a skin detector that is 
currently used in 70% of the Dutch police regions 

 

3.1 Overview 
Pixel-based skin detection involves the automated recognition 
of skin pixels in natural images, without any knowledge about 
texture, structure, or other types of aggregate information. The 
complexity of this problem arises partially from the wide 
color space of skin. Factors like illumination and color casts 
further add to the complexity of the problem. Usually, skin 
detection is performed in normalized color spaces.  The choice 
for a suitable color space cannot be made independent of the 
type of classifier used.  Choices here are mainly between 
parametric methods (such as Gaussian Mixture Models, or 
Maximum Entropy Classifiers ([14]) and non-parametric 
methods such as histogram-based Naïve Bayes classifiers.  As 
noted by [11], the Naïve Bayes classifier is invariant with 
respect to color spaces, which is the reason why we adopted it 
in our work.  

The Naïve Bayes skin classifier (or skin probability map) 
basically consists of a 3d-histogram and two priors, the 
probabilities of observing skin and non-skin. The 3d-
histogram describes the chance of observing either skin or 
non-class given a certain RGB combination in the cells of the 
histogram. Every RGB combination in the training data is 
stored in a 3d-histogram. Apart from this, suitable smoothing 
techniques need to be applied to account for missing RGB 
combinations in the test data.  

In order to cope with the problem of sparsity (unseen 
combinations of RGB values in the test data), the value range 
of a color dimension (red, green, blue) can be partitioned into 
a number of bins, after which the probabilities of observing 
skin or non-skin for a specific three-dimensional bin can be 
computed. For binning, several options are open, like fixed 
size binning, or minimum description based binning [12]. 

During testing, an image is again processed pixel by pixel. 
Every pixel is allocated to a certain 3d-bin, and the probability 
of skin for the bin the RGB combination is allocated to, is 
computed as follows.  
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Alternatively, a pixel-wise Naïve Bayes classifier would 
consist of  a simple thresholded decision rule mapping the bin 
for every pixel pi in an image to a 0 (non-skin) or 1 (skin), 
which is in fact the classifier we used in our work. The 
threshold was estimated on heldout development data. 

 

 
Figure 3: Skin detection applied to 4 random images  

 

3.2 Experiments 
In our experiments, we trained on a subset of 3000 images of 
the Compaq skin database [16]. This database consists of 4670 
skin images and 8964 non-skin images supplied with 
manually crafted skin masks. These masks describe the 
partitioning of an image in skin and non-skin parts, from 
which the skin/non-skin probabilities can be estimated. We 
experimented with MDL based binning [12] but in the end 
opted for a simpler uniform binning in combination with 
smoothing. At the same with we experimented with pre-
processing the images with a color correction algorithm. 

For performance evaluation we consider the pixel 
classification performance and the image classification 
performance. For the pixel classification we simply count the 
number of pixels that are classified correct or incorrect as skin 
or non-skin. The results are presented as a ROC (Receiver 
Operator Curve) plot. As can be seen from Figure 4, binning 



 

the skin data seems to consistently improve the performance a 
little bit, especially for higher true positive rates. 

 

 
Figure 4: ROC for pixel classification (left) and e ntire image 

classification (right) 

 

We implemented the skin filter in a prototypical image 
ranking system, ranking images on the basis of the aggregate 
pixel skin probabilities.  Investigators can use this type of 
facility to focus on skin images first when browsing through a 
large repository of confiscated images, a process that benefits 
from high precision. If in the top N ranked images a (any) 
child pornography image is present, the suspect will be subject 
to further prosecution without further ado. Low precision 
would demote the workflow to manual inspection, in the worst 
case of all images.  In Figure 5 the ROC curve is plotted for 
the skin detection algorithm applied to entire images, with or 
without color correction and uniform binning. 

 

4 VIDEO FINGERPRINTING  
 

As already noted the task of analyzing all confiscated material 
is a huge task. Over the years the police force has build up a 
database containing illegal material (both images and video).  

New suspect material is first checked against already 
processed and categorized material with MD5 checksums. But 
often this test fails because of small transformations such as 
reencoding, logo insertion, lossy compression etc. 

For identification purposes sometimes watermarking is used, 
i.e. the insertion of a hidden signal in the video. However 
insertion of the watermark has to be done by the producer of 
the material and this is not an option in the case of child 
pornography. Hence there arises the need for identification of 
videos based on the content of the video. These methods are 
generally called video fingerprinting. 

Recently video printing technology has been under active 
development for digital rights management and copyright 
infringement applications [15]. The application of video 
fingerprinting to forensic research is quite new, although the 
first applications are appearing [13]. 

 

4.1 Overview 
It is natural to make a distinction between CBCD (content-
based copy detection, sometimes called near-copy detection) 
and CBVR (content-based video retrieval). With CBCD the 
goal is to find copies of videos (with small distortions). With 
CBVR the goal is to find videos with a (for humans) similar 
content. For forensic applications both applications are 
relevant and in practice video fingerprinting systems For 
example 2 videos of  2 different football matches should not 
be matched in CBCD, but they are both about football they 
can be matched within CBVR.  

 

 
Figure 5: Similar videos retrieved by the TNO video  fingerprinting 

system. Top match is CBCD, bottom match is CBVR.  

 

4.2 Results 
Since video fingerprinting is not new, the goal is not to 
develop completely new technology. Rather we want to 
identify the specific problems that arise in the context of child 
pornography. 

One very specific problem is the huge legacy of video tapes 
(analog material) that is digitized for storage and transmission 
through the internet. Often this analog material has very 
specific distortions (noise, synchronization problems). Also 
during analogue to digital conversions it happens often that 
frames are missing from the data stream. This means that the 
video fingerprinting technique used must be robust to a certain 
percentage of missing frames. Related to this is the fact that 
child pornography material is often of relatively low quality as 
compared to commercial movies. Material is often created 
with inexpensive home cameras and distribution is done 
mainly over the internet where high compression is desirable. 
Further, quite often, different videos are compiled to new 
videos. This implies that fingerprinting techniques have to 
deploy local, time-stamped feature instead of global features 
(per video). 

With these requirements in mind and the fact that video 
fingerprinting has to be applied to extremely large datasets, 
we have chosen for a technique that is easy to implement and 
is known to produce adequate performance. For local features 



 

we use binary fingerprints derived from the individual frames. 
Each frame is divided into blocks and for each block the mean 
greyscale intensity is calculated, see Figure 6 below. 

 
Figure 6: Haar based fingerprint 

These binary fingerprints are indexed per video. Retrieval is 
done in several stages. From the new video material 
fingerprints are calculated. With these fingerprints and the 
index an initial search is performed. The result is a list of 
tentative matches. Each of these matches is then subjected to a 
more detailed comparison using fingerprints of both the 
database and the query video. Finally all the results are 
combined by removing duplicate results and combining 
overlapping results. 
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Figure 7: TNO video fingerprinting system 

 

5 GENERIC SEMANTIC INDEXING 
 

When looking at detectors for indexing child pornography 
data it is clear that some special detectors like the skin 
detector just described are important. However, when an 
investigator is searching through a large collection of videos 
to find any clue of victims or suspects a large set of concept 
detectors is useful. However, it is not feasible to develop 
specific detectors for each of them. Therefore, in addition to 
specific detectors we employ generic detector schemes.  

The visual indexing process starts with computing a high-
dimensional feature vector for each shot. In our system we use 
the Wiccest features as introduced in [10]. Wiccest features 
combine color invariance with natural image statistics. Color 
invariance aims to remove accidental lighting conditions, 
while natural image statistics efficiently represent image data.  

Computing visual features and similarity is common practice 
in all interactive content based video retrieval systems. We 
now move on to the more specific topic of adding semantic 
indexing to the data, which is the process of associating every 
shot in the database with a measure of presence of the given 
concept. The central assumption in our semantic indexing 
architecture is that any video which is made with a purpose is 
the result of an authoring process. When we want to extract 
semantics from a digital broadcast video this authoring 
process needs to be reversed. For authoring-driven analysis 
we proposed the semantic pathfinder [9], composed of three 
analysis steps. It follows the reverse authoring process. Each 
analysis step in the path detects semantic concepts. In 
addition, one can exploit the output of an analysis step in the 
path as the input for the next one. The semantic pathfinder 
starts in the content analysis step. In this analysis step, we 
follow a data-driven approach, using both visual and textual 
information, of indexing semantics. The style analysis step is 
the second analysis step. Here we tackle the indexing problem 
by viewing a video from the perspective of production. 

Finally, to enhance the indexes further, in the context analysis 
step, we view semantics in context. One would expect that 
some concepts, like vegetation, have their emphasis on 
content where the style (of the camera work that is) and 
context (of concepts like graphics) do not add much. In 
contrast, more complex events, like people walking, profit 
from incremental adaptation of the analysis to the intention of 
the author. The virtue of the semantic pathfinder is its ability 
to find the best path of analysis steps on a per-concept basis. 
The generic indexing structure has been used to create a 
lexicon of 101 concepts. Elements in the lexicon range from 
specific persons to generic classes of people, generic settings, 
specific and generic objects etc. See [9] for a complete list. 
The quality of the results varies widely. Some of the concepts 
have good accuracy, while some perform very poorly. There 
are two factors influencing the accuracy. The variety in 
appearance of the object and settings and whether the set of 
training samples supplied sufficiently covers this variety. 

 

6 THE I-DASH APPLICATION 
 

The different search technologies described in the previous 
sections have been integrated into a visual workbench called 
the Investigators Dashboard, or I-Dash for short. In this 
dashboard some additional novel techniques have been 
implemented which are described in the next paragraphs. 

 

6.1 Thread based video browsing 
All of the search techniques defined in the previous sections 
are based on rankings either by pre-ranking data based on 
semantic detectors, or example-driven: given some current 
focal shot, show near copies or video containing the same 
object. To allow for effective browsing it is advantageous to 
give the user the opportunity of browsing through all of these 



 

dimensions.  To do so we have introduced the notion of thread 
based browsing [8]. A thread is a linked sequence of shots in a 
specified order, based upon an aspect of their content. We 
define several thread types in our system. The most used form 
of threads is the query result thread: the result of a user 
constructed query. In this case the shots are linked because 
they all originate as results from the same query. Other forms 
of threads include visual threads, semantic threads, top-rank 
threads, textual threads and the time thread. The visual thread 
links shots together which share the same visual 
characteristics, so that shots next to each other are also 
visually similar. The semantic thread links shots together 
based on their detected semantic concept scores, so that shots 
next to each other both contain the same set of semantic 
concepts. The textual thread links shots to each other which 
contain the same ASR text. The time thread can be compared 
to the time line of a video.  A special form of thread is the top-
rank thread, which just connects the top N shots from every 
concept to each other; so that one thread length N is generated 
for every concept. The search engine supports two modes for 
displaying results. Both display modes show an active focal 
shot, and a collection of threads relevant to the focal shot. 
Both display modes use a fixed layout where the focal point is 
always the largest most centered shot on the screen, and all 
relevant threads are shown in a star formation around it. The 
user has only to choose between two actions: select, or 
bookmark, the current focal shot as a valid result, or switch 
focus to any of the neighbouring shots.  As a third option the 
user can also use the mouse to directly bookmark any visible 
shot by clicking on it. 

The CrossBrowser only displays the initial query results and 
the time thread, and thereby limits the user in the browsable 
dimensions. The RotorBrowser shows all relevant threads, 
including time, for each shot. The CrossBrowser allows 
movement through the initial query results, and for each result 
limited movement through the time thread. To preserve 
context the user is not allowed to leave the initial query results. 

The RotorBrowser does allow the user to leave the initial 
query result set so the user can browse through anything that 
catches his interest. To prevent the user from “getting lost” a 
system of hotkeys was added to enable quick jumping back to 
the last initial query result. A screenshot of the CrossBrowser 
is shown in Figure 8. 

6.2 Intelligent video playback 
Playing a normal video search for events is not very efficient. 
For a video collection of 100 hours this would require an 
investigator to watch 100 hours of video. However, the human 
visual system is capable of processing much more data at the 
same time. In I-Dash video is played in six windows at the 
same time, at twice or more times the normal speed. In this 
way 1 hour of video can be reviewed in only 5 minutes or less. 

 

 
Figure 8: I-Dash with CrossBrowser 

 

7 THE I-DASH PROJECT 
 

The fight against production and distribution of child 
pornography by applying digital video analysis will be 
continued at the European level. The EU safer internet plus 
programme has funded the 2 year project IDASH with the 
following partners: University of Amsterdam, TNO, ZiuZ, 
University of Surrey, INESC and 5 EU police organisations as 
end users.  

The project takes the I-dash visual workbench as a starting 
point. It will be installed at the start of the project at all end-
user sites. In the mean time, applied R&D will adapt and 
improve the latest technology to this specific domain. The 
police will not only get a working solution right from the start, 
but competitive state-of-the-art methods in the course of the 
project as well. 

The objectives are the development of an operational system 
capable of handling thousands of hours of videos potentially 
containing child pornography. Further, it will establish a 
European database with known child pornography and a 
standard for efficient data exchange between the various 
national police forces. The project will impact the European 
fight against child pornography by making investigators more 
efficient, and improving national and international 
collaboration. 

 

8 CONCLUSIONS 
Now that so many people have easy access to information and 
software the fight between law enforcement agencies and 
criminals is becoming more symmetrical. The latest research 
into image processing and information mining is crucial for 
keeping the police one step ahead of pedophiles. As new 
technology is employed in the fight against child pornography 
the difference between victory and defeat lies in deploying 
superior knowledge.  
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