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Abstract:In this paper we investigate the use of visual tosl
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been implemented in a demo called iDash and severaf
the techniques are actively used by the Dutch pokcforce
in the fight against child pornography.
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1 INTRODUCTION

With the arrival of the digital age, police in albuntries
dealing with child abuse and child pornography héuend

themselves facing new challenges. Broadband intesnd

affordable storage media have contributed to artosiqn in

the quantity of multimedia data confiscated by g®las part
of child pornography inquiries. In The Netherlaradsne the
amount of data confiscated by the police has ism@drom
4.5 to 152 terabytes between 2003 and 2006. THe dfs
sifting through confiscated case material to idgnthild

pornography can be tedious, time consuming, emaliipn
taxing and difficult. Increasingly, technologicabavvy

pedophiles attempt to outwit law enforcement agenddy
using technology, such as image-processing, vidi#oig and

encryption software, to hide their tracks. The gpmlihave
responded by taking the fight in the only directipossible,
into the digital domain.

The main obstacle to be faced by the investigasotise huge
amount of data that has to be inspected in ordefina

conclusive evidence for child abuse. This has taddeved
in the very limited time available to keep a persorcustody
without charge. In order to address these problaui$able
technological support is essential. During the lastrs TNO,
the Dutch Forensic Institute (NFI), the Universityf

Amsterdam and ZiuZ have worked together to devédmis

for analyzing digital images and video.

In this paper we describe the theoretical backgioamd the
practical benefits of these techniques and we m®pbeir
integration into a visual workbench called iDashotad to
forensic image analysis.

2 GENERIC OBJECT DETECTION

One topic of ongoing research is matching of speoibjects
and locations in large (usually unlabelled) imagéections.
A tool that allows large image databases to be aligu
'googled’ would help the police to link crimes bytohing
crime scenes. For example, a photo taken insidespest’s
home could be compared to child pornography daeshahe
key idea behind such a tool is to automaticallyedesalient
(prominent, distinguishing) patches in an image describe
each patch independently to the viewing angleadcs to the
camera and the acquisition conditions. In this Wiging the
correspondences between two photos of the samee dsen
facilitated regardless of the transformations ne¢athem.

A framework for generic object detection was piaedeby
Schmid and Mohr 7] and can be summarized as: detect,
describe, match. The three steps will be describethore
detail below.

2.1 Detection: keypoints and salient regions

In many images there are regions which possess some

distinguishing, invariant and stable property whichn be
detected independently with high repeatability. sThioperty
makes them a good choice for the representativegema
patches whose correspondence is sought. The diteatient
regions should changmvariantly with the transformation
relating the two images [3,4]. The salient patcltas be
detected either as groups of image pixels in tloenity of a
keypointor directly assalient regions

Keypoints in images that can be detected repeataddy
mostly related to corner like structures. The Harmorner

Technology that has been developed so far consibts detector [1] (and variations) is a basic buildirgdh for many

content-based image analysis tools (e.g. face tilmecand

skin or nudity detection), video fingerprinting amdficient

video and image retrieval techniques that treat gesa
analogical to text.

Corresponding author:

detectors. The Harris corner detector itself howegenot
scale or affine invariant. To introduce scale imaace often
scale-spaces are introduced. Inspired by this, Ldék
proposed a method for extracting keypoints whicte ar
invariant to image scaling and rotation and partiyariant to

Pieter Eendebak, TNO Science and Industry, Stieltjesweg 1, 2600 AD Delft, Phone: +31 15 269 28 53



change in illumination and camera viewpoint. Thipmach approximations have been developed. Several gemmmetr
is known as the Scale Invariant Feature Transf@HT) as it constraints can be added to further improve thechnag. In
transforms the image data into scale-invariant dioates Figure 1 we have plotted detected region, matclsisgua
relative to local features. The SIFT features dme $cale- descriptor and the final matches after adding atiapa
space extrema, subject to a stability criterionm (fetails the consistency constraint.

reader is referred to [6]).

Although the SIFT algorithm performs very well & not
invariant to affine transformations. Since  affine
transformations appear with changes of the camiemapwoint
several people have developed affine invariant aliets. A
comparison of six state-of-the-art affine covariargion
detectors is presented in [4]. Fsiructuredscenes, containing
homogeneous regions with distinctive boundariesu@sally
are the indoor scenes), the MSBE®akimally Stable Extremal
Region) and IBR {ntensity-based regigndetectors perform
best as they analyze the image isocontours directly

Similarly to MSER, we proposed to analyze imag
isocontours by decomposing the image into binamyssr
sections and computing two main types of salienepsnfor
each. The first type are the regions darker/brigtitan their
surroundings (similarly to MSER), and we proposew type
of salient regions manifested as significant irtagties on
strong contrast borders. They are combined intma fmap
based on the stability of their support over thessrsections. _ _ _ o
Figure 1: MSSR region detection. On top all detecte  d regions, in

Our detector uses morphological operators (for ildethe e hottom corresponding regions and spatially cons ~ ist matches
reader is referred to [7]), hence the nakherphology-based

Stable Salient Region®SSR) detector. We have shown [7]

that while the MSSR achieved comparable repeatakiid 2 4 \/isyal words

matching performance to MSER and IBR, it is best |
identifying perceptually salient regions. In Figute bottom
we have plotted all matched regions from the scam the
ones satisfying the spatial consistency contraamés shown
connected with lines.

ISreaking down an image into an invariant set of gma
patches allows for applying insights from text i@tal. The
image patches can be thought of as 'visual wordkaaset of
images can be treated as a set of 'documents'ichwsbts of
visual words can be searched. The detected regimether
with their descriptor are called visual words. Jasta normal
2.2 Region descriptors text consists of words at specific locations, aade consists

of visual words spread throughout this documening/she
analogy we can transfer search methods from tesievel
into the visual domain.

In a second step of a generic matching applicatitwe,
detected regions are encoded using a robust (antatio
geometric and photometric modifications) descriptand
matching between the descriptors is performed.tRercase
of keypoints the descriptor is computed over the
neighbourhood of the point, while in the case @& Halient

regions, the image values within the region (after
normalisation) is used. A popular choice is the TSIF
descriptor (usually of dimension 128) computed otles

normalised regions- a 3D histogram of gradient tiocaand

orientations [6]. SIFT descriptors produce the best
performance for different scene types, geometricd an

photometric transformations [5]. : ‘ wwp;s'%.w.f.;%
. v = By

2.3 Matching o T P

Descriptors are usually matched by using distanegics (e.g. Figure 2: Query by example

Euclidean or Mahalanobis distance) and selectings paith
the shortest distance (nearest neighbour methodjceS
nearest neighbour queries in high dimensional spabeays
have a worst-case quadratic running time, vario

In text searches several words are combined irdapy. For
example ‘color’, ‘colour’ and ‘colors’ are all conmed into
the same concept. In the visual domain this coordp to
lé?ouping salient regions with similar descriptamiclusters.



Some of these clusters are not very useful forcbéray. For _ i i
example when comparing English text the words “twed P(skin|b(p,)) = P(b(p; )| skin)P(skin)

“and’ are usually omitted from the search. The saam be P(b(p))
done by creating stoplists for visual words tha aot very i ) , ,
discriminative. P(b(p)) = P(b(p, )| skinP(skin) + P(b(p; ) | noskin P(noskin

Using these techniques it is possible to searchctfkely

through large image sets to locate an object @rést or a The aggregate (non)skin probability for an entineage I,
particular scene. In Figure 2 the result is shoWra @uery consisting ofn pixels p (RGB combinations, withb(p)
using an example image of a food box. The resuwlfsain not denoting the bin this RGB combination is allocatepis then
only the original image, but also many variations. simply

P(skin| 1) :% " p(skin|b(p,))

3 SKIN DETECTION

_ _ N _ P(non- skin|1) =1- P(skin| )
For the task of analyzing material containing (@hil , , , . .
pornography a skin detector (or nudity detector)vesy Alternatively, a pixel-wise Naive Bayes classifierould
helpful. TNO and ZiuZ have developed a skin detethiat is CONSISt of a simple thresholded decision rule rivapfhe bin

currently used in 70% of the Dutch police regions for every pixelp; in an image to a 0 (non-skin) or 1 (skin),
which is in fact the classifier we used in our workhe

threshold was estimated on heldout development data
3.1 Overview

Pixel-based skin detection involves the automagedgnition
of skin pixels in natural images, without any knedgde about
texture, structure, or other types of aggregatermétion. The
complexity of this problem arises partially fromettwide
color space of skin. Factors like illumination atmlor casts
further add to the complexity of the problem. Usgatkin
detection is performed in normalized color spacEse choice
for a suitable color space cannot be made indeperafehe
type of classifier used. Choices here are mairdywben
parametric methods (such as Gaussian Mixture Mopdgls
Maximum Entropy Classifiers ([14]) and non-paranuetr
methods such as histogram-based Naive Bayes @assiAs
noted by [11], the Naive Bayes classifier is inaati with
respect to color spaces, which is the reason whydepted it
in our work. Figure 3: Skin detection applied to 4 random images

The Naive Bayes skin classifier (gkin probability map
basically consists of a 3d-histogram and two pridie )
probabilities of observing skin and non-skin. The- 33.2 EXperiments

histogram describes the chance of observing esker or |n our experiments, we trained on a subset of 36€@es of
non-class given a certain RGB combination in tHs @ the e Compagq skin database [16]. This database ¢s0§i4670
histogram. Every RGB combination in the trainingtadas gkin images and 8964 non-skin images supplied with
stored in a 3d-histogram. Apart from this, suitasmeoothing manually crafted skin masks. These masks desctilee t
techniques need to be applied to account for Ns&®B partitioning of an image in skin and non-skin parfi®m
combinations in the test data. which the skin/non-skin probabilities can be estada We

In order to cope with the problem of sparsity (werse experimented with MDL based binning [12] but in taed
combinations of RGRalues in the test data), the value rangepted for a simpler uniform binning in combinatiovith

of a color dimension (red, green, blue) can beitred into  smoothing. At the same with we experimented witle-pr
a number of bins, after which the probabilitiesafiserving processing the images with a color correction éigor.

skin or non-skin for a specific three-dimensional ban be For performance evaluation we consider the pixel
computed. For binning, several options are opéde fixed classification performance and the image classifioa
size binning, or minimum description based binr{itg. performance. For the pixel classification we simpunt the
During testing, an image is again processed piyepixel. number of pixels that are classified correct ooinect as skin
Every pixel is allocated to a certain 3d-bin, anel probability or non-skin. The results are presented as a ROCe(Re

of skin for the bin theRGB combination is allocated to, isOperator Curve) plot. As can be seen from Figurbidning
computed as follows.




the skin data seems to consistently improve thiopaance a
little bit, especially for higher true positive eat

Figure 4: ROC for pixel classification (left) and e
classification (right)

ntire image

We implemented the skin filter in a prototypical age
ranking system, ranking images on the basis ofatigregate
pixel skin probabilities. Investigators can usés ttype of
facility to focus on skin images first when browgithrough a
large repository of confiscated images, a prodeastienefits
from high precision. If in the topN ranked images a (any)
child pornography image is present, the suspettwikubject
to further prosecution without further ado. Low gisgon
would demote the workflow to manual inspectionthia worst
case of all images. In Figure 5 the ROC curvelastgd for
the skin detection algorithm applied to entire iesgwith or
without color correction and uniform binning.

4 VIDEO FINGERPRINTING

As already noted the task of analyzing all contisdanaterial
is a huge task. Over the years the police forcebldd up a
database containing illegal material (both images\dadeo).

New suspect material is first checked against dire
processed and categorized material with MD5 cheuksBut
often this test fails because of small transforareisuch as
reencoding, logo insertion, lossy compression etc.

For identification purposes sometimes watermarkngsed,
i.e. the insertion of a hidden signal in the vidétowever
insertion of the watermark has to be done by tloelpeer of
the material and this is not an option in the cabkehild
pornography. Hence there arises the need for fits=iton of
videos based on the content of the video. Thesbadstare
generally called video fingerprinting.

Recently video printing technology has been undgiva
development for digital rights management and dgpyr
infringement applications [15]. The application @fdeo
fingerprinting to forensic research is quite neWth@ugh the
first applications are appearing [13].

a

4.1 Overview

It is natural to make a distinction between CBCDBn{ent-
based copy detection, sometimes called near-cotsctiten)
and CBVR (content-based video retrieval). With CB@2
goal is to find copies of videos (with small digtons). With
CBVR the goal is to find videos with a (for humasghilar
content. For forensic applications both applicaioare
relevant and in practice video fingerprinting sys$e For
example 2 videos of 2 different football matchlswdd not
be matched in CBCD, but they are both about fobtthely
can be matched within CBVR.

Figure 5: Similar videos retrieved by the TNO video fingerprinting
system. Top match is CBCD, bottom match is CBVR.

4.2 Results

Since video fingerprinting is not new, the goal riet to

develop completely new technology. Rather we wanmt t

identify the specific problems that arise in thatext of child
pornography.

One very specific problem is the huge legacy okwidapes
analog material) that is digitized for storage &m@shsmission
through the internet. Often this analog materiab hery
specific distortions (noise, synchronization profg. Also
during analogue to digital conversions it happefisnothat
frames are missing from the data stream. This m#wisthe
video fingerprinting technique used must be roboist certain
percentage of missing frames. Related to this esfdict that
child pornography material is often of relativebyl quality as
compared to commercial movies. Material is oftepated
with inexpensive home cameras and distribution @med
mainly over the internet where high compressiodeisirable.
Further, quite often, different videos are compilied new
videos. This implies that fingerprinting techniqukeave to
deploy local, time-stamped feature instead of dldeatures
(per video).

With these requirements in mind and the fact thatew
fingerprinting has to be applied to extremely ladmasets,
we have chosen for a technique that is easy toeim@ht and
is known to produce adequate performance. For liecdlres



we use binary fingerprints derived from the indivadl frames. Computing visual features and similarity is comnpyactice
Each frame is divided into blocks and for each blite mean in all interactive content based video retrievasteyns. We
greyscale intensity is calculated, see Figure 6vbel now move on to the more specific topic of addinghaetic
indexing to the data, which is the process of datiag every
shot in the database with a measure of presentgedjiven
concept. The central assumption in our semantieximd
architecture is that any video which is made withugpose is
the result of an authoring process. When we wargxtoact
semantics from a digital broadcast video this atitigo
process needs to be reversed. For authoring-diawvetysis
we proposed the semantic pathfinder [9], compodeithree
analysis steps. It follows the reverse authoringcess. Each
analysis step in the path detects semantic concdpts
These binary fingerprints are indexed per videdri®eal is addition, one can exploit the output of an analgsep in the
done in several stages. From the new video matef@th as the input for the next one. The semantibfipader
fingerprints are calculated. With these fingermirind the starts in the content analysis step. In this amalgtep, we
index an initial search is performed. The resul@igdist of follow a data-driven approach, using both visuad aextual
tentative matches. Each of these matches is tHgactad to a information, of indexing semantics. The style asaystep is
more detailed comparison using fingerprints of batie the second analysis step. Here we tackle the indgxioblem
database and the query video. Finally all the tesare by viewing a video from the perspective of prodowti
combined by removing duplicate results and comiginirFinally, to enhance the indexes further, in thetexinanalysis
overlapping results. step, we view semantics in context. One would eixpleat
some concepts, like vegetation, have their emphasis

Figure 6: Haar based fingerprint

< o content where the style (of the camera work thataisd
o fo \_d—/ context (of concepts like graphics) do not add much
e RS fp db (L contrast, more complex_events, like pe(_)ple_walk|pg)f|t
e \_l_/ from incremental gdaptatlon of the analy5|s 'F0|tfn_er_1t|0r_1 _of
the author. The virtue of the semantic pathfindeits ability
fp search to find the best path of analysis steps on a pacept basis.
Lz The generic indexing structure has been used tatera
lexicon of 101 concepts. Elements in the lexicomgeafrom
detailed specific persons to generic classes of people,rgpesettings,
search tentative matches ~ Specific and generic objects etc. See [9] for apmlete list.
final results The quality of the results.varies widely. Somelaf toncepts
have good accuracy, while some perform very podrhere
- are two factors influencing the accuracy. The \gri
RS e appearance of the object and settings and whelieesdt of

training samples supplied sufficiently covers trasiety.
Figure 7: TNO video fingerprinting system

6 THE I-DASH APPLICATION
5 GENERIC SEMANTIC INDEXING

The different search technologies described in grevious
sections have been integrated into a visual woriheralled
the Investigators Dashboard, or |-Dash for shont. this
dashboard some additional novel techniques haven bee
implemented which are described in the next papgra

When looking at detectors for indexing child porrayghy
data it is clear that some special detectors like s$kin
detector just described are important. However, nviag
investigator is searching through a large collectd videos
to find any clue of victims or suspects a large afetoncept
detectors is useful. However, it is not feasibledevelop
specific detectors for each of them. Thereforeadudition to

specifi_c dete_ctors_we employ generic dgtector sels.em_ All of the search techniques defined in the presisections
The visual indexing process starts with computingiigh- are based on rankings either by pre-ranking datedan

dimensional feature vector for each shot. In ostesy we use semantic detectors, or example-driven: given sommeent
the Wiccest features as introduced in [10]. Wicdestures focal shot, show near copies or video containing shme

6.1 Thread based video browsing

combine color invariance with natural image statistColor
invariance aims to remove accidental lighting ctods,
while natural image statistics efficiently represimage data.

object. To allow for effective browsing it is adtageous to
give the user the opportunity of browsing througlofthese



dimensions. To do so we have introduced the naifghread
based browsing [8]. A thread is a linked sequerichots in a
specified order, based upon an aspect of theireconiWe
define several thread types in our system. The et form

of threads is the query result thread: the restila auser
constructed query. In this case the shots are dirkecause
they all originate as results from the same quéther forms

of threads include visual threads, semantic thretgsrank
threads, textual threads and the time thread. Thealthread
links shots together which share the same visual
characteristics, so that shots next to each other adso
visually similar. The semantic thread links shotgether
based on their detected semantic concept scor¢basshots
next to each other both contain the same set ofastm
concepts. The textual thread links shots to eabkrovhich
contain the same ASR text. The time thread canologpared

to the time line of a video. A special form ofdhd is the top-
rank thread, which just connects the top N shaimfevery
concept to each other; so that one thread lengthgenerated
for every concept. The search engine supports tedes for
displaying results. Both display modes show anvactocal
shot, and a collection of threads relevant to thealf shot.
Both display modes use a fixed layout where thalfpoint is . ) i o )
always the largest most centered shot on the sceshall The fight against production and distribution of ildh
relevant threads are shown in a star formationratdu The Pornography by applying digital video analysis wihie
user has only to choose between two actions: setsct continued at the European level. The E_U safer me!lepl_us
bookmark, the current focal shot as a valid resuftswitch Programme has funded the 2 year project IDASH Wikt
focus to any of the neighbouring shots. As a thiption the following partners: University of Amsterdam, TNOjuZ,
user can also use the mouse to directly bookmaykvisible University of Surrey, INESC and 5 EU police orgatiisns as
shot by clicking on it. end users.

The CrossBrowser only displays the initial quergules and The project takes the I-dash visual workbench asading
the time thread, and thereby limits the user inthewsable POINt. It will be installed at the start of the jwet at all end-
dimensions. The RotorBrowser shows all relevaneatis, USer sites. In the mean time, applied R&D will adapd
including time, for each shot. The CrossBrowseowadi MProve the latest technology to this specific domdhe
movement through the initial query results, andefach result Police will not only get a working solution rightoim the start,
limited movement through the time thread. To pmerbUt competitive state-of-the-art methods in thersewf the
context the user is not allowed to leave the indizery results. Project as well.

The RotorBrowser does allow the user to leave tigai 1he objectives are the development of an operdtisysiem
query result set so the user can browse througthimgythat Ccapable of handling thousands of hours of videdemally
catches his interest. To prevent the user fromtifgpost” a containing child pornography. Further, it will esfish a
system of hotkeys was added to enable quick jumpaak to EUropean database with known child pornography and

the last initial query result. A screenshot of @@ssBrowser Standard for efficient data exchange between theows
is shown in Figure 8. national police forces. The project will impact tBeropean

_ _ fight against child pornography by making investiga more
6.2 Intelligent video playback

efficient, and improving national and international
Playing a normal video search for events is noy edficient. collaboration.

For a video collection of 100 hours this would reguan

investigator to watch 100 hours of video. Howetleg, human
visual system is capable of processing much mota alathe

Figure 8: I-Dash with CrossBrowser

7 THE I-DASH PROJECT

8 CONCLUSIONS

same time. In I-Dash video is played in six windoatsthe
same time, at twice or more times the normal spaethis
way 1 hour of video can be reviewed in only 5 mirsubr less.

Now that so many people have easy access to infammand
software the fight between law enforcement agencied
criminals is becoming more symmetrical. The latesearch
into image processing and information mining isctali for
keeping the police one step ahead of pedophilesnéws
technology is employed in the fight against chitdmography
the difference between victory and defeat lies @pldying
superior knowledge.
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