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Abstract

We specify an algorithm to enumerate a minimum complete set of com-
binatorially non-isomorphic orthogonal arrays of given strength ¢, run-size
N, and level-numbers of the factors. The algorithm is the first one han-
dling general mixed-level and pure-level cases. Using an implementation
in C, we generate most non-trivial series for t =2, N < 28, ¢t =3, N < 64,
and t = 4, N < 168. The exceptions define limiting run sizes for which

the algorithm returns complete sets in a reasonable amount of time.
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1 Introduction

In scientific experimentation, researchers may want to investigate the joint effect
of several factors on the properties of some product or process. The experiments
are frequently conducted according to an orthogonal array (OA) of strength ¢.
Formally, an OA of strength ¢ is an N X n matrix whose ith column contains
s; different factor-levels in such a way that, for any ¢ columns, every t-tuple
of levels appear equally often in the matrix [19]. The N rows thus specify the
different experiments to be performed, and the n columns specify the factors
whose action is to be investigated.

For designed experiments, the strength ¢ of an OA is usually chosen in the
range 2 < t < 4. OAs with ¢ = 2 result in main effect estimates that are
uncorrelated with each other. These estimates are, however, correlated with
those of two-factor interactions. For OAs with ¢ = 3, the estimates of the main
effects are uncorrelated with interactions between any two other factors. How-
ever, there could be a problem of interpreting an active interaction component.
Finally, OAs with ¢ > 3 have orthogonal components of two-factor interactions.
Thus, they could be employed when many such interactions are expected, at
the cost of an increased run size. We refer to [13] for a comprehensive account
on properties and explicit constructions of orthogonal arrays.

At this point, it is convenient to introduce more terminology. We use the
notation OA(N; sy, ..., 8,;t) for an OA of run size N, strength ¢, n factors, and
level numbers si,...,s,. These features are collectively called the parameters
of an array. A mixed, or asymmetrical, array has not all its s; equal. Pure, or
symmetrical arrays have equal level numbers for all the factors. It is convenient
to use the notation s¢s4 for arrays with a s;-level factors and b so-level factors.
Finally, regular arrays have N = sP for some positive integer p, and prime
number s. There are p s-level basic factors, and the settings of the remaining
factors can be calculated by modular arithmetic from those of the basic factors.

Two arrays are said to be combinatorially isomorphic if one array can be



obtained by permuting rows, columns, or factor levels of the other array. An
isomorphism class is the collection of all arrays that can be obtained from a
parent array by permuting rows, columns, or factor levels. Each array of such a
class can be considered as a representative of the class, because one can obtain
the remaining arrays by the permutations just mentioned. It would be highly
desirable to have an enumeration method obtaining, for given parameters, a
minimum complete set of OAs. Such a set has a single representative for each
isomorphism class. If the factors are all qualitative, one would then have to
choose the best array according to some optimality criterion, assign the factors
to the columns such that prior knowledge on the factor’s activities is incorpo-
rated as good as is feasible, and to assign the factor levels to the symbols in a
column at random.

There is an extensive literature on enumeration methods producing pure-
level OAs, with a bias towards strength-2 arrays. One of the most time con-
suming steps in all of these methods is the pairwise testing of arrays to decide
their equivalence. Only non-equivalent arrays are considered for extension with
further columns. The present paper has two main contributions. The first one
is the replacement of the pairwise testing with a very fast test to decide whether
a single array is of some special form. Only if this is the case, the array is kept
for possible further extension. The second main contribution is to propose for
the first time an algorithm for constructing a minimum complete set of mixed-
level OAs of given run-size, numbers of factor-levels and strength. When using
such an algorithm, one would like to obtain results in a reasonable amount of
computing time. We generate a wide range of example arrays to show its po-
tential to produce practically meaningful series of arrays in a limited amount
of time. More in particular, we generate all but some non-trivial cases of ¢t = 2
and N <28, t=3and N <64, and t =4 and N < 144. The exceptions are
used to discuss the limitations of our algorithm.

The rest of this paper is organized as follows. In Section 2, we give an

overview of existing literature on enumeration of pure OAs. Our algorithm for



mixed arrays is discussed in detail in Section 3. Next, we present series of arrays
of strength 2, 3, and 4, produced with the algorithm, along with computing times

(Section 4). Finally, in Section 5 there is a brief discussion.

2 Literature review

An essential element in establishing a minimum complete set of OAs is in proving
that all of the arrays are indeed non-isomorphic to each other. The problem is to
avoid calculation of all possible permutations of rows, columns, and factor-levels
to map one array on another array. Clark and Dean [6] present an algorithm
to test the equivalence of two-level arrays without having to calculate all these
permutations. The algorithm can be extended to cases with factors at more than
two levels, and indeed was used a such by [10]. A survey of further equivalence
tests is given by [16].

The enumeration in a minimum complete set of OAs was addressed by [5],
[26], [25], [1], [11], and [4]. These papers differ in the specific arrays considered
and in the test of design isomorphism. Chen et al. [5] is on symmetrical regular
designs. The authors were able to obtain a complete catalogue of all regular
two-level designs of up to 64 runs. For given run-size N and number of factors
n, the authors start with a minimum complete set of designs with n — 1 factors
and they consider all possible extensions with one additional column. The
resulting designs are then classified with the word-length pattern. Those of
equal word-length pattern are classified further according to their letter pattern.
Finally, among designs with equal letter pattern, exhaustive isomorphism testing
is performed. The ideas from this paper were used by later authors to obtain
two-level designs with run-sizes up to 128 [2], or three-level designs with run-
sizes up to 729 [28].

Tsai et al. [26] study designs for quantitative factors. They present a column-
wise algorithm to obtain three-level designs of strength 2. There is no combi-

natorial isomorphism testing, but the designs are classified through measures



derived from A-efficiency.

Sun et al. [25] present an algorithm to construct all non-isomorphic two-level
designs of specified run-size and numbers of factors. Like [5], the authors start
with a minimum complete set of designs with n —1 factors and they consider all
possible extensions with one additional column. The resulting designs are then
classified with the extended word-length pattern [7]. Those in the same class
are further tested with algebraic techniques.

Angelopoulos et al. [I] also considered two-level designs. These authors
use initial classification with Hamming distances and D-efficiencies. Designs
in the same class are then tested with the so-called max-int algorithm of [§].
Evangelaras et al. [9] used a column-wise extension method earlier described
n [26]) for the purpose of generating all pure nonisomorphic 18-run arrays
with three-level factors. Isomorphism tests were carried out directly, without
intermediate classification.

Finally, [4] do not use extensions from a minimum complete set of n—1 factor
arrays. Instead, they proposed a powerful ILP programming technique to con-
struct minimum complete sets of pure-level arrays of given run-size, strength,
and level number of all the factors. Isomorphism testing was carried out with

computer-algebraic techniques.

In our algorithm, to be described shortly, we also use the idea of extending
a minimum complete set of arrays for n — 1 factors with an additional column.
Like [11], we start each column with a specific element. Previous authors added
complete columns and checked the orthogonality to existing columns afterwards.
Instead, we use element-wise addition of symbols and registers book-keeping all
t-tuples of symbols to abort additions that violate the strength requirement
in an early stage. We avoid pairwise preliminary isomorphism testing [16] by

retaining only arrays of a specific form.



3 Minimum Complete Set Algorithm

The enumeration problem entails constructing a minimum complete set of OAs
with given run-size, strength, and level numbers of the factors. No array in such
a set can be obtained from another array in the set by the joint operations of
permuting columns, permuting rows, and exchanging factor-levels. The set thus
does not contain combinatorially isomorphic arrays. Note that an OA can be
considered as a specific kind of combinatorial object. In this section, we apply
general principles for algorithms that exhaustively generate all combinatorial
objects of some specified class to formulate a Minimum Complete Set Algorithm,
or MCS ALGORITHM, for enumerating orthogonal arrays. We illustrate with
a worked example. We end this section with a comparison of the run-time of
the algorithm with previously published results. A possible concern with the
algorithm is that it might not return a minimum complete set. In Appendix 1,

we prove that it does return such a set.

3.1 Description

The Minimum Complete Set algorithm, or MCS ALGORITHM, implements gen-

eral principles from [15] to the specific case of generating a minimum complete

set of OA(N;s1,..., sp;t). We assume without loss of generality that n > ¢,
and s1 > s9 > -+ > s,. We also assume that an s;-level factor uses symbols
0,1,...,(s; —1). The task at hand is called isomorph-free exhaustive genera-

tion. A key idea of the algorithm is to retain arrays only if they are of a specific
form that can be tested easily. This form is called lexicographically minimum

in columns, according to Definition 1.

Definition 1. Consider two OA(N;s1,..., su;t), say, D1 and Ds. Write d;
(dz) for the N.n-tuples obtained by concatenating the columns of Dy (Ds). Let
the elements of these tuples be denoted with d;;(i = 1,2;5 =1---Nn). D is

lexicographically less than Dy, denoted Dy < Do, if there is a kK < N.n such that



dij = dgj for j =1---k—1and dix < dok. D; is lexicographically minimum in

columns (LMC) if no other array from its isomorphism class is smaller.

Each array considered by the MCS ALGORITHM will be called a node. The
input is the set N,n,t, s1,...,8,. The output is a set of n — ¢t minimum com-

plete sets of OAs in LMC form. A global description of the algorithm follows.

1. Define the root node R as the unique LMC OA(N;s1,...,s:;t). Here,
A copies of all combinations of the first ¢ factors are generated, with the
index A defined as A = N/ (Hf s;). These are subsequently written down
in the unique LMC order, the first factor varying slowest, then the second

one, etc.

2. Call the EXTENSION ALGORITHM. This algorithm extends a particular
LMC OA(N;s1,...,84;t) to a series of OA(N;s1,...,8¢+1;t). The set of
all extensions of a minimum complete set in ¢ factors is guaranteed to

contain all LMC OA(N;s1, ..., S¢+1;1).

3. For each resulting array, call the LMC TEST to check whether the array
is LMC.

4. For the new set of LMC arrays, if ¢ < n, then return to step (2).

We will denote the collection of all child nodes from a parent X with C'(X). In
Step 3, it is tested whether a child node C;(X) is LMC. Extensions of non-LMC
nodes are not considered. LMC nodes are further extended and tested. We will

now look more closely at the components of the algorithm.

3.2 Extension Algorithm

The EXTENSION ALGORITHM extends an LMC array X with ¢ > ¢ columns
to arrays C;(X) with ¢ = ¢ + 1 columns by element-wise addition. Denote the
additional column with X (:,¢), and its elements with X (r, ¢), with r indexing

the rows. Denote the number of different symbols for the new column with



S¢, and denote the symbols themselves with 0,...,(s. — 1). The EXTENSION

ALGORITHM then runs as follows.

1. Set X(1,c¢) = 0. Note that all other choices result in a lexicographically

larger array.

2. Consider the next row. Choose the next element subject to all of the

following conditions.

(a) If s¢ = Sc—1, and X (z,¢) = X(z,(c¢—1)) for all z < r, then we require
X(rye) > X(r,(c—1)).

(b) If, apart from the new column, X(r,:) = X((r — 1),:), choose the

new symbol from {X(r — 1,¢),...,s. — 1}. Otherwise, choose from
{0,...,(se = D}
(¢) Introduce a symbol for the first time only if all smaller symbols have

been used at least once before in the current column.

3. For each possible element addition X (r,c), test compatibility of the the

column constructed so far with the strength of the array.
4. If the strength condition is violated, stop the current extension.

5. If the strength condition is met, and if the column is not completed, return

to step (2).

6. If the strength condition is met, and if the column is completed, return

the extended array to the main algorithm.

Condition 2al uses the fact that a new column in a section of the array
must be lexicographically larger than the previous one. Condition 2b| prevents
getting an array that was generated earlier. For example, suppose that we have
to extend a row 1 1 1 by an element 0, 1, or 2. We first try the extension with
0 and proceed with further extensions. Later on we return to this point and

try an extension with 1. Suppose that the next row starts off with 1 1 1. Than



it would not make sense to try an extension of that row to 1 1 1 0, because

switching the rows results in an array that has already been considered.

3.3 LMC test

It remains to be discussed how to test whether a node is LMC. We will explain
the test for pure arrays. The test for mixed arrays is slightly more complicated
because permutations of columns can only be carried out among those with
equal level-numbers.

A naive LMC test would perform all possible level permutations, row per-
mutations, and column permutations to find an image that is lexicographically
smaller than the original. As soon as we find such an image, we conclude that
the original is not LMC. If there is no such image, we conclude that the original
is LMC. For a pure array with s-level factors, the total number of permutations
is n!(s!)*N!. However, subsequent to permutations of levels and columns, the
row permutations giving the lexicographically smallest image can be determined
by sorting the resulting array. This reduces the number of permutations to be
checked to n!(s!)™. The sorting operation is computationally quite intensive, but
we will show below how to reduce the sorting time. In addition, we show how
to reduce the number of column and level permutations further by exploiting
the combinatorial properties of OAs.

The sorting time can be reduced by using the fact that the root of an OA,
subsequent to any combination of column permutations and level permutations,
and after sorting the rows, is always the same. For all s!® level permutations
in the first ¢ columns of an array, we can calculate in advance what row per-
mutations are needed to return the root. For each of the level permutations,
there may be several row permutations restoring the root. For each of the level
permutations, we store just one of these row permutations. We can use the
stored information repeatedly, because there are (?)t! possible choices for the
first ¢ columns that may need to be checked.

The above reasoning led us to split the LMC test in two stages called the



Algorithm 1 Root stage of the LMC test. Input: array O, strength ¢. Output:
scalar y(O): 0=fail, 1=pass

1: for all choices for the first ¢ columns do

2:  Sort the resulting array using the first ¢ columns.

3:  for all possible level permutations of the first ¢ columns do

4 Sort the array using a precalculated row permutation such that the root
is restored.

5 Pass the array on to the non-root stage at level ¢ + 1.
6: if the non-root stage returns a 0 then

7 Set y(O) = 0. Terminate the test.

8: else

9: Continue with the containing for-loop.

10: end if

11:  end for

12: end for

13: if the test so far has not been terminated then
14:  Set y(O) = 1. Terminate the test.
15: end if

root stage and the non-root stage. Algorithm [1/shows the root-stage of the test.
There, we consider all possible choices for the first ¢ columns. The first sorting
operation results in the first ¢ columns having the root form. The array thus
obtained can be subjected to further level permutations in the first ¢ columns;
the sorting of the rows can use the precalculated row permutations. The result-
ing array is then passed on to the non-root stage. If the latter stage finds an
array that is lexicographically less than the original, the original is discarded
and the test is terminated.

Algorithm [2/ details the non-root stage of the LMC test. The required input
is an array A and a level p. The non-root stage starts with replacing column
p with any of the n — p 4+ 1 non-root columns A(:,p) up to A(:,n). All level
permutations of the replacing column are checked. If needed, further column
permutations are checked by calling the non-root stage recursively in line 12l

The row sorting operations needed in the non-root stage are simple to per-
form, because the root stage always produces arrays that are already sorted in
the root. So the additional sorting needs only to be carried out in blocks of the
size of the index A . This reduces the complexity of sorting from O(N log N) to
O((N/X)(AlogA)) = O(N log A).

10



Algorithm 2 Non-root stage of the LMC test. Input: array A, level p. Output
scalar y(A): 0=decision taken (not LMC), 1=no decision taken

1: At level p do:

2: fori=p...ndo

3:  Let B be the array resulting from swapping column A(:,7) and column
A(:,p).

4:  for all level permutations of B(:,p) do

5 Sort B on the rows.

6: Compare B(:,p) with O(:, p).

7 if B(:,p) < O(:,p) then

8:

9

O failed the LMC test; return y(A) = 0.
else if B(:,p) > O(:,p) then

10: Continue with the containing for-loop.

11: else

12: Pass B to the non-root stage at level p 4 1.

13: if y(B) =0 then

14: Set y(A) = 0. Terminate non-root stage for A.
15: end if

16: end if

17:  end for

18: end for

19: Return y(A) = 1.

A key feature of the non-root stage is to skip in an early stage the column
permutations that cannot make the array lexicographically smaller; see line [10
of Algorithm 2. Indeed, only if the test at level p is not conclusive, further

permutations are invoked.

4 Generation of minimum complete sets

Our LMC test operates on single arrays. So there is no need for a pairwise
comparison of arrays. This feature greatly facilitates distribution of calculation
tasks over several processors. Accordingly, we implemented the algorithm in a
C program that can be run on a single-core computer as well as on a multi-core
computer. Even in the single-core version, we believe that the LMC test and the
MCS ALGORITHM in general is very fast. The exception to this rule bears on
OAs with at least one factor with s; > 10. These OAs are hard cases, because
the root stage of our LMC test calculates in advance what row permutations

are needed to return the root after level permutations in the first ¢ columns of

11



an array. This amounts to storing H§:1(3i)! row permutations. Fortunately, all
of these cases within the range of OAs generated for this paper can be handled
in a different way.

In the next subsection, we compare computing times with the few computing
times we were able to find in the literature. We then present enumeration results
for a large number of series with 2 <t < 4. Our results are either new, or they
corroborate enumerations from the literature. We include a detailed discussion

that identifies the new results and those obtained earlier.

4.1 Some run-time comparisons

We were able to locate only two papers permitting a comparison of computing
times with our method. In the first one, [16], the authors state a computing
time of about 365 sec for the comprehensive Deseq2 method to decide that
two specific OA(18; 37; 2) were equivalent. We compute all OA(18; 3¢; 2) for
a =3...7in less than 1 second. This includes discarding equivalent arrays that
are not of LMC form. This is not to be taken as a criticism of [16]. Indeed,
the authors capitalized on a thorough overview of test methods rather than on
computing speed.

The second reference to compare our computing times with is [4]. The paper
presents a clever method to compute complete enumerations of non-isomorphic
pure-level orthogonal arrays using integer linear programming. For 36 out of
37 cases in that paper, our program yields the same number of non-isomorphic
arrays in much less computing time. The speed gain ranged from a factor of
7 up to a factor of 2122. In addition, the stated computing time of our MCS
ALGORITHM for a factor set s also covers MCS generation for all series with
a < a,. In [4], the computing times bear on a = a, only.

For OA(162;35%;4), [4] state a computing time of 13.9 sec, where our comput-
ing time was 14.2 sec. Our algorithm returned all OA(162;3%;4) (14 solutions)
in a few seconds. For the extension to 3% arrays, the LMC test was not called,

because there were no solutions at all. So the extension algorithm dominates

12



the search. This may explain the more or less equal computing times for the
two approaches.

We like to stress the fact that run-time comparisons are always risky. Indeed,
the speed gain of our algorithm may be explained partly by improved computer
speed. Nevertheless, our comparisons suggest that our algorithm performs well

over a large range of cases.

4.2 Strength-2 arrays

Table 1: Strength-2 results

N  Factor set  amax Time [min] Isomorphism classes

4 2¢ 3 -1

8 419 4 - 1,1,1

8 2¢ 7 - 02,2,1,1,1

9 39 4 - 1,1

12 622 2 -1

12 3to® 4 - 2,31

12 2@ 11 - 02,1,2,2,1,1,1,1, 1

16 gloa 8 - 1,1,2,1,1,1,1

16 49 5 - 2,1,1

16 4420 3 - 1,1,1

16 4392 6 - 2,4,4,4,2,2

16 4290 9 - 2,7,17,27, 30, 25, 14, 6, 3

16 4190 12 - 3,10, 28, 65, 110, 123, 110, 72, 38,
15, 8

16 2¢ 15 0.2 3,5, 11, 27, 55, 80, 87, 78, 58, 36,
18, 10, 5

18 6132 6 - 2,3,1,1,1

18 39 7 - 4,12,10,8,3

18 372! 7 - 3,15,48,19, 12, 3

20 10t2 2 02 1

20 50 8 - 3,10, 15, 38, 30, 4, 1

20 2¢ 19 1.6 3,3, 11, 75, 474, 1603, 2477, 2389,
1914, 1300, 730, 328, 124, 40, 11,
6, 3

24 12120 12 t01,1,2,1,2,1,1,1,1,1, 1

24 6490 11 7 3,38, 400, 2060, 3911, 2200, 1357,
689, 283, 64, 14

24 629 14 133 4, 25, 226, 2663, 19323, 58112,
65679, 26454, 12243, 4882, 1543,
277, 45

24 413190 13 856 5, 131, 6412, 226330, 2360583,

6467858, 5404183, 2341404,
963413, 350559, 94228, 16238, 1282

continued on next page
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Table 1| (continued)

N  Factor set  amax Time [min] Isomorphism classes

24 4120 20 6086 4, 25, 552, 21757, 457768, 3113669,
8168256, 12605571, 15119461,
14961206, 12096092, 7855020,
4066838, 1665918, 532484, 129122,

22880, 2758, 238
24 320 16 1391 4, 29, 573, 28745, 1089168,

14576216, 57436095, 71157023,
33893515, 10266252, 3305030,

981180, 220993, 32567, 2282
24 2¢ 23 66369 4, 10, 63, 1350, 57389, 1470157,

12952435, 38592861, 52912678,
51154497, 43092737, 31833387,
19960039, 10351396, 4385567,

1502242, 409478, 86725, 13833,

1604, 130

25 5% 6 07 2,1,1,1

27 9'3e 9 47 2,7,10,13,12,9,5, 4

27 39 13 323 9, 711, 187188, 922548, 157829
21688, 9793, 3766, 1252, 341, 68

28 14122 2 o1

28 70 12 10918 4, 25, 371, 21502, 395598, 1422094
1005490, 135569, 4296, 104, 21

28 2¢ 27 ? 4,7, 127, 17826, 5882186, ..., 7570

NOTES: -: computing times less than one second; ?: series are not
completed; : series not obtained by direct calculation.

For t = 2, we obtained all mixed-level series with N < 28, and all pure-level
series with N < 27. In addition, we obtained all OA(28;2%;2) for a < 7.
Table [1! presents the results. There are 33 ‘cases’, identified by their run sizes
N, and their factor sets. There can be one or more series per case; these differ
in the number of factors for one of the levels in the factor set. The tabulated
results are the maximum numbers of factors with that factor-level (amax), the
computing times of the complete case, and the numbers of isomorphism classes.
The numbers are ordered from right to left, the right most number bearing on
Gmax, the previous one on an.x — 1, etc.

OA(24;1212%;2) and OA(28;14%22%;2) were not obtained by direct enumer-
ation. For the first case, see Appendix 2. Regarding the second case, the single
isomorphism class as well as the value apax = 2, follows from [27].

The computing times in Table [1l will decrease with growing computer power.

They were included to distinguish easy and hard cases. At this moment, the

14



implementation performs well for mixed orthogonal arrays of strength 2 and
up to 28 runs. The OA(28;2%;2) for a > 8 were not obtained, however. The
estimated time for the complete case is roughly 24,000 years. Note that some
series with N > 28 may still be obtained for small numbers of factors.

For the 24-run cases with factor sets 6'4'2%, 612%, 413'2¢, and 3'2°, the
values of apax were previously unknown [I8]. Therefore, the number and nature
of the so-called dual atoms of the lattice Aoy of 24-run orthogonal arrays [18]
were also unknown. Dual atoms indicate factor sets such that, taking one array
of each of these sets, an array of all remaining factor sets can be obtained by
deleting columns or replacing the four-level factor with three two-level factors
[18]. We now establish that the values of amax are 11, 14, 13, and 16. This
implies that the dual atoms are 121212 6141211 4131213 and 41220,

For the OA(28;712%), we establish for the first time that amyay = 12. This re-
sults makes the lattice Aog completely known. Its dual atoms are 14122, 7141, 71212,
and 227,

For all values of apax in Table 1, the web-site [22] gives one explicit array
and a reference to papers where this array was obtained.

We will now discuss the number of isomorphism classes stated in Table (1.
All classes for the factor sets 23 and 2% and any N are given by [21] and [24],
respectively. The results on N < 9 and tabulated in Table [1 are well-known.
The OA(4;22;2) and OA(8;27;2) are unique; see Theorem 7.37 of [13]. The lat-
ter result explains one of the isomorphism classes for each of OA(8;2%;2) with
a < 7. The two isomorphism classes for OA(8;23;2) are the full factorial and
the replicated OA(4;23;2). The two isomorphism classes for OA(8;2%;2) are
the half fraction of a full factorial, and the replicated OA(4;23;2) with one ad-
ditional factor. The unique OA(8;4!2%;2) can be constructed from OA(8;27;2)
by replacing two columns and their sum modulo 2 with a four-level factor. Re-
moving two-level columns gives the complete case of OA(8;412%;2). Finally, the
single isomorphism class of OA(9;33;2) follows form the uniqueness of a Latin

Square of order 3; see [13], Table 8.47. The unique OA(9;3%*;2) follows form
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Theorem 8.3 in the same reference.

There has been much recent interest in cases with 12 < N < 20. The single
isomorphism class for OA (4k; 2k x 29max; 2) for odd k, as well as the value amax =
2, follows from [27]. The pure two-level arrays have been enumerated completely
by [25]. A classification of all 18-run orthogonal arrays with statistical criteria
is given in [20]. The 3'2¢ series with N = 12, the 392! cases with N = 18, and
the 5!2¢ cases with N = 20 were established independently by Ye et al. [29].
The 3¢ series was established by [9]. As far as we know, the results on the 492°
cases with @ > 1,b > 1 are new. For the 4% case, see [13].

Until now, the numbers of isomorphism classes for the mixed-level cases
with 24 < N < 28 were not known, except for the trivial OA(28;14122). For
OA(24;2%;2), [1] presented enumeration results for a < 7. The 130 isomorphism
classes for a = 23 were first given in [13], Theorem 7.37. For OA(28;2%;2), [1]
give the number of isomorphism classes for a < 6. The 7570 classes for a = 27
were obtained by Sloane; see sequence A048885 of [23]. The OA(25;5%;2) case
for a = 2 follows from Table 8.47 of [13]. The results for a = amax follows form
Theorem 8.3 and 8.28 of the same reference. Finally, the 68 OA(27;3'3;2) were

first given by [17].

4.3 Strength-3 arrays

For t = 3, we obtained all but a few cases with N < 64. Exceptions are the
OA(56;2%; 3), OA(64;2%3), and OA(64;412%;3). These cases were obtained
only for a up to 8, 6, and 6, respectively. The incompleteness of these re-
sults comes as no surprise, because a complete enumeration of the the derived
0A(28;2%;2), OA(32;2%;2), and OA(32;4'2%;2) was not reached either. The
estimated time to completion for these cases is roughly 50,000 years (both pure
two-level cases) or 1000 years (mixed-level case).

Table 2/ presents the enumeration results. There are 38 cases in total, dis-
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Table 2: Strength-3 results

N  Factor set  amax Time [min] Isomorphism classes

8 20 4 -1

16 412¢ 3 -1

16 2¢ 8 - 02,2,1,1,1

24 622 3 -1

24 3to® 4 - 2,3

24 20 12 - 2,1,2,1,1,1,1,1, 1

27 3e 4 -1

32 gloa 3 -1

32 4%2¢ 4 - 2,22

32 4120 7 - 3,7,7,11,8

32 2¢ 16 4.9 3,5, 10, 17, 33, 34, 32, 22, 23, 12,
10, 5, 5

36 3290 2 -3

40 10'2¢ 3 20 1

40 590 6 - 3,7, 1,1

40 2@ 20 4.8 3,3,9, 25, 105, 213, 353, 260, 235,
132, 96, 36, 26, 7, 6, 3, 3

48 12'2¢ 3 o1

48 6latoe 2 -3

48 62° 7 0.6 4,14, 30, 74, 45

48 41319 4 - 5,35,19

48 419¢ 11 22 4,4, 24, 98, 387, 1362, 2595, 2217,

48 3t 9 727 3,6%1, 134, 938, 3056, 5018, 3

48 2¢ 24 74232 4, 10, 45, 397, 8383, 166081,
1310006, 3528089, 4460865,
3980095, 3139653, 2165144,
1288460, 629705, 259346, 84495,
24012, 4919, 1129, 130, 60

54 632 3 2

54 32! 5 02 5,334

54 3° 5 - 7,4

56 14122 3 o1

56 7too 6 0.6 4,14,7,10

56 27 28 ? 4,7, 86,4049, 757190, ...

60 51319a 2 - 6

64 16*2* 3 o1

64 81412 2 03 4

64 gloa 7 727 5,26, 192, 1146, 924

64 4° 6 05 5,1,1

64 4527 2 04 1,1

64 449 6 04 3,53,3,1,1

64 4399 8 1.9 10, 107, 237, 255, 126, 35, 12, 2

64 429 12 873 12, 267, 13903, 104949, 175297,
151708, 138825, 83409, 35807,
10030, 2159

64 4120 15 ? 7,75, 4101, 251617, ...

64 2¢ 32 ? 5,19, 358, 91789, ...
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played in the same way as in Table[l. The OA(48;1212%;3), and the OA(64; 16'2%; 3)
were not obtained with our algorithm; see Appendix 2.

The computing times in Table 2/ shows that the current implementation
performs well for orthogonal arrays of ¢t = 3 and N < 64, with the exception of
the missing cases mentioned earlier. Note that some series with N > 64 may
still be obtained for moderate numbers of factors.

For all cases mentioned in Table 2, [3] derive the value of amax and give
one explicit construction for arrays with ¢ = apax. The same authors give
the number of non-isomorphic OA(48;41312%;3) and OA(54;3°2%;3). The four
OA(54;35; 3) were derived by [12]. All classes for the factor sets 2¢ and 2° and
any N are given by [21] and [24], respectively. The uniqueness of OA(27;3%;3)
was proven by [14]. Results on OA(4s; s12%; 3) are trivial. Bulutoglu and Margot
[4] obtained all OA(N;2%3) for N = 24, 32, 40, and 48, and values of a from
6 up to 11, 11, 10, and 8, respectively. Finally, the classes for OA(16;2%;3) and
6 < a < 8 follow from folding over the unique OA(8;2%71;2).

As far as we can see, all numbers of isomorphism classes in Table 2| not

covered with the above paragraph are new.

4.4 Strength-4 arrays

Table 3: Strength-4 results

N Factor set  amax Time [min] Isomorphism classes

16 2@ 5 -1

32 412¢ 4 -1

32 2¢ 6 - 2,2
48 6129 4 -1

48 3190 5 - 2,3
48 2@ 5 -2

64 8122 4 0.1 1

64 4299 3 -2

64 4120 6 - 3,7,2
64 2¢ 8 - 3,573
72 3229 3 - 3

80 10t2¢ 4 -1

80 5190 5 - 3.7

continued on next page
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Table!3 (continued)
N Factor set

Time [min] Isomorphism classes

S
g
I
%

80 2% 6 - 3,1

81 3@ 5 -1

96 1242 4 o1

96 6412 3 - 3

96 622 5 05 4,14

96 413192 4 - 5,35

96 4t2° 5 - 4,1

96 329 7 03 4,21,64,5

96 2@ 7 - 4,94

108 3390 2 5

112 14129 4 o1

112 7o 5 3.7 4,14

112 2¢ 6 - 4,3

120 51312 3 - 6

128 162* 4 o1

128 8laa 8 239 5,26, 19, 11, 10

128 81412 3 29 4

128 4399 3 0.2 10,6

128 4298 6 4.5 12,198, 202, 77

128 4199 9 244 7,75, 870, 2649, 1014, 275

128 2¢ 15 4372 5, 17, 123, 1153, 3632, 1479, 400,
2,1,1,1

144 182 4 o1

144 9loe 5 709 5,26

144 6224 3 43 6

144 6122 4 - 6

144 63122 4 16 10, 265

144 41329 2 - 18

144 3229 5 8333 9, 319, 11232

144 31oe 6 181 6, 78, 130

144 2¢ 8 229 5,7, 35,20

160 202 6 o1

160 10*2* 6 t 6,45

160 514129 5 201 26, 2277, 28

160 4100 7 14642 9, 43, 1965, 534

160 5loa 7 29648 9, 230, 11016, 19153

160 2 <17 ? 6,29, 450, 99618, ...

162 3¢ 5 0.2 14

162 352 1 1.6 14, 46

162 319a 1 - 13

168 73l 3 0.3 12

NOTES: -: computing times less than one second; ?: series are not

completed; 1: series not obtained by direct calculation.
For t = 4, we completed all cases but one with N < 168. The case OA(160;2%;4)
was obtained only for a < 8. Table 3| presents the results. There are 48 cases
in total, displayed in the same way as in Table 1. The cases of OA(8s;s'2%;4)

and OA(160;10'2%;4) were derived in a different way, detailed in Appendix 2.
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The computing times in Table 3| shows that the current implementation
performs well for orthogonal arrays of strength ¢ = 4 and up to 168 runs, with
the exception of OA(160,2%;4). The estimated time to completion of this case
is roughly 10,000 days. The last case in the table illustrates that some series
with IV > 160 may still be obtained for moderate numbers of factors.

The values of anax for pure two-level arrays of strength ¢ = 4 and index
1 < X\ < 5 were established by [21]. The amax for A = 8 is given in [13]. The
values for A = 6,7, and 9 were established by [4]. The first open case is for
A = 10. The stated upper bound ay.x < 17 is the Rao bound.

For the pure three-level arrays with A\ = 1 or 2, the values of ayay follow
from Table 12.2 in [13].

As to the numbers of isomorphism classes, the factor sets 2° and 2% were
enumerated by [21] and [24], respectively. Bulutoglu and Margot [4] enumerated
all pure two-level arrays of run-sizes N = 64,80,96,112, and 144. The 81-run

case was derived in [I4]. Apart from these cases, the results in Table [3| are new.

5 Discussion

To our knowledge, the algorithm proposed in this paper is the first one to
handle general orthogonal arrays of given strength, run-size and level-numbers
of the factors. It features element-wise addition of symbols in a column, and
isomorphism testing performed on single arrays.

For growing run-size, element-wise addition has advantages over addition of
a new column balanced for the first ¢ — 1 columns ([26], [25], [9]). For example,
the addition of two-level columns to OA(24; 3!22; 3) requires evaluation of
46656 columns. For the OA(48; 3122; 3), this number grows to more than 117
billion. For adding a three-level column to OA(54; 33; 3) the number grows to
3.87 x 10'7. Element-wise addition is clearly useful in these cases.

The isomorphism testing performed on single arrays has the advantage that

it permits a distribution of the calculation over several processors. Given a set
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of, say, m arrays that have to be subjected to isomorphism testing, a pairwise
testing procedure could involve m — 1 < ¢ < 0.5m(m — 1) tests. For the single-
array testing, ¢ = m. On the other hand, the single-array testing requires that
the testing is comprehensive, while the pairwise testing need only to be applied
within groups that are homogeneous with respect to initial classification criteria.

The enumeration results in the Tables 1, 2, and |3/ were set up to contain
the limiting run-size N; for ¢ = 2,3, and 4. N; is such that the isomorphism
classes of all series with NV < N; can all be generated, while this is not the
case for the limiting run size itself. For ¢t = 2,3, and 4, N; = 28,56, and 160,
respectively. These run-sizes are limiting in view of the very large number of
possible pure two-level arrays. The tables also show that it is well possible to
obtain complete series for run sizes N > Nj, especially if the factor set contains
multi-level factors. To identify critical sections in the current implementation,
we break down the running time of a series into (1) the extension algorithm,
(2) the LMC check for arrays not of LMC form, and (3)LMC check for arrays
of LMC form. As an example, Table 4 presents the distribution of computing
times for OA(27;3%;2). The table has computing times for the three main
components, and the total generation. The total is larger than the sum for the

main components because of input/output and communication tasks. All the

Table 4: Distribution of computing times in OA(27;3%;2)

a Time (sec) # arrays
LMC+ LMC-  extension total n+ n-
3 0.00 0.00 0.00 0.01 9 378
4 0.59 2.34 0.99 3.95 711 146589
5 373.53 203.48 62.43 646.19 187188 1071410
6 3516.03 1451.97 4380.38  9394.34 922548 2023895
7 1059.08 357.86 5958.09 7413.85 157829 229279
8 291.09 102.21 495.94  895.85 21688 46180
9 237.72 87.55 39.17  365.82 9793 22676
10 156.14 64.13 11.81 232.69 3766 9617
11 92.60 26.24 2.86 122.01 1252 3583
12 41.76 4.63 0.63 47.10 341 565
13 29.57 0.65 0.11 30.35 68 52
14 0.00 0.00 0.02 0.02 0 0
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times bear on extension and testing from arrays with one column less. The last
two columns count the number of LMC and non-LMC arrays generated. We see
that even within one case the distribution of the total computing time over the
components can vary substantially.

We have three main candidates for improving the N; of our MCS ALGO-
RITHM. Firstly, we may be able to use a partial LMC test after completing half
of the column (or some other fraction). If the test is negative, further extension
is blocked. This could speed up the extension itself and the LMC check for
non-LMC arrays. Secondly, results of previous LMC rejections may improve
the next array or block further generation or testing. Finally, we feel that an
improved sorting time should be possible by using the structure present in the
array. All these improvements can help to reduce the time for generating the
arrays and testing non-LMC arrays. For the testing of arrays of LMC form,
there are no major ideas for improvement. Indeed, there is no help for the
combinatorial explosion of arrays of given strength when run-sizes increase.

Using an algorithm to generate series of arrays gives little information on
succinct ways to construct individual arrays. Knowledge of an explicit con-
struction method may well lead to more insight into the best way to analyse
the results of an experiment. We would therefore welcome research on such
methods.

As a final note, our LMC test can be changed such that it transforms an array
to the LMC representative of its class. This may provide a quick isomorphism
test for any pair of arrays. We investigated this idea by switching each of the
130 LMC OA(24,2%3;2) to a randomly chosen array from its isomorphism class.
It took 433 sec to transform the 130 arrays back to LMC form. It takes 21 sec to
check whether the 130 LMC arrays are indeed LMC. So the reduction to LMC
form seems to take about 20 times longer than the LMC check. As the LMC
check is quite fast, we consider the isomorphism test based on the LMC test as

a promising issue for further research.
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Appendix 1: Proof of correctness

Using the terminology of [15], henceforth KO, we define the domain of the
search to be the root node joined with all child nodes from an LMC parent. It
is convenient to define a search tree as a rooted tree whose nodes are objects
in the domain of the search. Two nodes are joined by an edge if and only
if they are related by one search step. The following theorem ensures that
p(X) € C(p(X)), where p(X) is the LMC representative of the isomorphism
class to which X belongs, p(X) is the parent of node X, and p(X) is in LMC

form.

Theorem 1 The EXTENSION ALGORITHM produces nodes X for which p(X) €

C(p(X)), if p(X) is in LMC form.

Proof. Consider the parent node p(X). An LMC child node must have vy, = 0.
This is ensured by Step 1 of the algorithm. Step 2 prevents generation of an ar-
ray that is lexicographically higher than is necessary. Otherwise, the algorithm
permits all possible choices of elements that are compatible with the required

strength. [J

The MCS ALGORITHM considers C(X) only if X is of LMC form. So an
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array is augmented only if its parent is LMC. KO call this way of generating
the arrays orderly generation. Their Theorem 4.20 states that if the orderly
generation is implemented on a search tree that satisfy two conditions, it re-
ports exactly one node from each isomorphism class of nodes, which is what we
want to prove. The conditions are (1) the search tree has nodes X for which
p(X) € C(p(X)), and (2) for every LMC node X in the search tree, p(X) is
also LMC. Condition (1) is ensured by Theorem 1 above. For condition (2),
we note that the objects in the search domain can be considered as N.n tuples
over an alphabet of max{s;} symbols and the additional symbol ¢ for entries in
columns yet undefined. Now, define the lexicographical order of symbols from
the smallest to the largest element to be 0, 1,. .., (max{s;} — 1), . Further, de-
fine the lexicographic significance of a position in the tuple as its order number.

We rephrase Theorem 4.24 of KO as

Theorem 2 For every nonroot node x and for a search tree algorithm con-

structing N.n-tuples in order of lexicographic significance: if p(x) # p(p(x))

then x # p(x).

By noting that our algorithm does construct the tuples in increasing order of
lexicographical significance, we see that Theorem 2 applies. Condition (2) above
is just the reversal of the implication statement in the theorem. We conclude
that the algorithm reports exactly one node from each isomorphism class of

nodes, and therefore, exactly one array of each isomorphism class.

Appendix 2: Mixed series not covered by the im-
plementation

The implementation of our algorithm cannot handle level-numbers larger than
9. So some series in Tables (1), 2 and (3| were enumerated in an indirect way.
First, the series OA(24;12 x 2%;2) can be enumerated by noting the fact

that each derived OA(24;2%;2) must be a fold-over array. As a fold-over array
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must have t = 3, we can construct all arrays for a > 2 by checking which of
the OA(24;2%;3) have a fold-over structure. For a = 2 an a = 3 this is trivial,
because these arrays are six or 3 copies of a full factorial design and these are
fold-over designs. These designs are unique. For 4 < a < 12, all OA(24;2%;3)
from Table 2 are fold-over arrays. There are two isomorphism classes for a = 4
and a = 6; there is one class for each of the remaining values of a. We conclude
that the numbers of isomorphism classes for OA(24;12 x 2%;2) and a > 2 are
given by 1,1, 2,1, 2,1, 1,1, 1, 1, and 1.

The second case not completely covered by our implementation is O A(4s; s x
2%, 3) for 4s > 48. For each level of the s-level factor, these arrays have one copy
of an OA(4;2%;2). There is a single such array for a = 3. So the two-level part
of the required series must consist of an even number of copies of this design
an the same number of fold-over copies. The number of isomorphism classes is
thus 1.

The third cases is OA(8s;s x 2%;4). The number of isomorphism classes is
found by an argument similar to the above one.

Finally, generation of OA(160;10'25;4) was performed as usual. However,
we made the root used in the LMC check consisting of two columns only. In
this way, we could store all row permutations as required for the root stage.
There were 6 isomorphism classes. We generated extensions with a sixth two-
level column without invoking the LMC check. This resulted n 4378 arrays.
We split the 10-level column in a two-level and a five-level column to obtain
OA(160,2 x 5 x 26:4). If any of these arrays is not LMC, then neither is the
parent array with the 10-level factor. After the LMC check 47 arrays were
retained. These were subjected to a full LMC test, using a root of just the first
two columns for the root stage. A total of 45 arrays remains. None of these are

extendible.
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