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Abstract

We study the design of two-level experiments with N runs and n factors large enough
to estimate the interaction model, which contains all the main effects and all the two-factor
interactions. Yet, an effect hierarchy assumption suggests that main effect estimation should
be given more prominence than the estimation of two-factor interactions. Orthogonal arrays
(OAs) favor main effect estimation. However, complete enumeration becomes infeasible for
cases relevant for practitioners. We develop a partial enumeration procedure for these
cases and we establish upper bounds on the D-efficiency for the interaction model based
on arrays that have not been generated by the partial enumeration. We also propose an
optimal design procedure that favors main effect estimation. Designs created with this
procedure have smaller D-efficiencies for the interaction model than D-optimal designs, but
standard errors for the main effects in this model are improved. Generated OAs for 7–10
factors and 32–72 runs are smaller or have a higher D-efficiency than the smallest OAs
from the literature. Designs obtained with the new optimal design procedure or strength-
3 OAs (which have main effects that are not correlated with two-factor interactions) are
recommended if main effects unbiased by possible two-factor interactions are of primary
interest. D-optimal designs are recommended if interactions are of primary interest.

Keywords: coordinate exchange; D-efficiency; Ds-efficiency; optimal design; orthogonal array;
partial enumeration

technometrics tex template (do not remove)

1



1 INTRODUCTION

Experimenters using two-level factorial experiments usually think of the data as being generated

from an additive model with main effects, two-factor interactions and higher-order interactions.

To structure the analysis, they assume that main effects are more important than two-factor

interactions, while two-factor interactions are more important than higher-order interactions.

The assumption, called effect hierarchy, was coined first by Wu and Hamada (2000).

Empirical evidence in support of the effect hierarchy assumption was given by Li et al. (2006).

These authors considered 46 two-level experiments with 3–7 factors. They found that about 40%

of the main effects were active, as opposed to 11% of the two-factor interactions and 6.8 % of

the three-factor interactions. In addition, the median main effect size was four times larger

than the median size of the two-factor interactions and eight times larger than the median size

of the three-factor interactions. While three-factor interactions evidently cannot be ruled out,

including only main effects and two-factor interactions in a model for responses from two-level

experiments seems a reasonable first approach.

In this paper, we consider the design of two-level experiments large enough to estimate a

model with all the main effects and all the two-factor interactions. Yet the effect hierarchy

assumption suggests that there are not so many two-factor interactions active, and that the

size of active two-factor interactions is considerably smaller than the size of the main effects.

Under these conditions, it makes sense to maximize precision of main effects that are unbiased

by possible two-factor interactions. An example of this type of experiment was carried out

recently at TNO, Eindhoven, the Netherlands. The experiment was concerned with the making

of phantoms to calibrate medical devices. Phantoms are cylindrical pieces of gelatinous material

that mimic human tissues; these tissues are to be investigated with the device once it is properly

calibrated. A phantom is tested by exposing it to light of various wavelengths. For each of

the wavelengths, the reflection is recorded, which can be affected by the concentrations of seven

colorants. The main interest was in the size of the factorial effects. Only a few of the colorants are

expected to be active for any given wave length. Further, optical laws suggest that main effects

are much more likely than interaction effects. The experimental budget permitted construction

of as many as 40 phantoms. Clearly, this number should be sufficient to construct a model with

an intercept, all seven main effects and all 21 two-factor interactions. In the rest of this paper,

we call such a model the interaction model.

The purpose of this paper is to develop procedures for generating designs that can fit the

interaction model, while giving the main effect estimators more precision than the estimators

of the two-factor interactions. Design alternatives that might be considered for the phantom

experiment include orthogonal arrays (OAs) and D-optimal designs. We contribute to the de-

velopment of both types of design. In the rest of this section, we provide more details on OAs
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and D-optimal designs and we outline the further organization of the paper.

1.1 Orthogonal arrays

Generally, an OA of strength t, N runs and n factors at s levels is an N × n array of s symbols

such that for every t columns every st t-tuple occurs equally often (Rao, 1947; Hedayat et al.,

1999). Such an array is denoted OA(N,n, s, t). Our present interest is in arrays with s = 2, and

we omit the reference to the number of levels of the factors in the notation for an OA.

An attractive feature of OAs is that a model with only main effects can be estimated with the

maximum possible precision. Therefore, OAs seem ideal candidate designs if the effect hierarchy

assumption applies. However, the extent to which the maximum precision for main effects is

retained in the interaction model depends on the strength of the OA.

OAs of strength 4 are D-optimal for the interaction model, because all subsets of four factors

form an equally replicated full factorial design. For this reason, all main effect contrast vectors

and all two-factor interaction contrast vectors are orthogonal to each other, and both the main

effect estimators and two-factor interaction estimators have a maximum precision.

A disadvantage of these arrays is their run size. For the seven factor phantom design, an OA

of strength 4 requires 64 runs, which is a substantial larger than both the experimental budget

of 40 runs and the number of parameters in the interaction model, which equals 29. At the

same time, the effect hierarchy assumption suggests that it is not important that all effects in

the interaction model have maximum precision. It is therefore natural to study OAs of strength

t < 4 capable of fitting the interaction model with smaller run sizes than a strength-4 array.

OAs of strength 3 retain mutual independence of main effects and independence of main

effects with interactions. Therefore, main effects in an interaction model are estimated with

maximum precision. The estimators of two-factor interactions are correlated. Therefore, at least

some of these interactions are not estimable with maximum precision in a full interaction model.

This need not be a problem if the effect hierarchy assumption holds, however. It is therefore of

interest to study strength-3 OAs with maximum D-efficiencies for the interaction model (to be

defined formally later in the paper).

OAs of strength 2 have orthogonal main effect contrast vectors, but these are correlated

with the contrast vectors of two-factor interactions. Therefore, the main effect estimators have

maximum precision only in a first-order model. At the same time, the D-efficiencies for the

interaction model can be higher than in strength-3 arrays, because the combinatorial restrictions

are less severe.

A naive way to find out OAs of strength 2 or 3 with the best possible D-efficiency is to

enumerate all OA(N,n, t), and to check subsequently their D-efficiencies. The problem one is

faced with in carrying out such a procedure is the large number of different designs. For example,

we were able to establish a set of 530,469,996 OA(32, 7, 2). Any OA(32, 7, 2) not in the set can
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be obtained from an array in the set by a sequence of column permutations, row permutations

or level switches in a column. The arrays in the set cannot be obtained from each other by such

a sequence of permutations. There are five OAs with the best D-efficiency for the interaction

model; its value is 0.8432.

The enumeration of the set of OA(32, 7, 2) took about 7 days on a PC with an Intel Core i7

870 CPU at 2.93GHz. It is computationally infeasible to enumerate all OA(N,n, 2) for N ≥ 36

and n ≥ 6. Similarly, it is not feasible to enumerate all OA(N,n, 3) for N ≥ 64 and n ≥ 8. The

first contribution of this paper is the introduction of a partial enumeration procedure for cases

with t ≤ 3 where a complete enumeration is not feasible and to introduce a simple method to

establish upper bounds on the D-efficiency of arrays that have not been generated by the partial

enumeration. Our partial enumeration of OA(32, 7, 2) took just 5 hours of computing time,

produced all five D-optimal arrays and resulted in an upper bound of 0.8799 for D-efficiencies in

arrays that were not generated.

1.2 Optimal designs

In the D-optimal approach, a design of N runs and n factors is sought that maximizes the D-

efficiency of the interaction model (Atkinson et al., 2007). Because no combinatorial restrictions

are imposed, the D-efficiency of a D-optimal design for this model will generally be higher than

the D-efficiency of the best OAs under this model. However, such a D-optimal design does

not support effect hierarchy. For example, we generated a D-optimal design for the phantom

experiment with average standard errors for main effects and two-factor interactions of 0.1644

and 0.1652, respectively. The second contribution of this paper is the development of an optimal

design procedure that favors the main effect estimation. For the phantom example, we created

a design with average standard errors for main effects and two-factor interactions of 0.1600 and

0.1905, respectively. In this case, there is only a small improvement in main effect precision and

a more substantial loss of precision in two-factor interactions. For many other cases, however,

the improvement in main effect precision is much more substantial.

1.3 Organization

The rest of this paper is organized as follows. In Section 2, we return to the motivating example

in more detail. We consider four different candidate designs and introduce design measures

to characterize the designs. In Section 3, we introduce the enumeration algorithm for OAs

and the optimal design algorithm for D-efficient designs that favor main effect estimation. In

Section 4, we detail the numbers and best efficiencies of the generated OAs, give upper bounds

for those that might have been obtained by enumeration of the complete set, and contrast these

with efficiencies obtained by optimal design algorithms. Next, we study in detail the statistical
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properties of the best designs for up to 72 runs and up to 10 factors and compare these with

the best literature designs known to us. Finally, there is a brief discussion of the strengths and

weaknesses of our approach in Section 6. Software to generate orthogonal arrays and optimal

designs is provided in supplementary materials.

2 OPTIMALITY MEASURES AND CANDIDATE DE-

SIGNS

In this section, we introduce four optimality measures for designs that fit the interaction model.

We illustrate these measures with four candidate designs for the phantom experiment.

2.1 Optimality measures

The interaction model based on a two-level design A can be stated formally as y = Xβ + e,

where y is an N ×1 vector of responses and X an N ×p model matrix with an intercept, n main

effect contrast vectors and n(n − 1)/2 two-factor interaction contrast vectors. Finally, β is the

p× 1 vector of the factorial effects and e is an N × 1 vector of random errors with expectation

zero and variance σ2.

The parameters of the model can be estimated with the OLS estimator b of β with b =

(XTX)−1XT y; its covariance matrix is (XTX)−1σ2. Therefore, the capability of a design to

return precise estimates of the factorial effects is maximized if XTX is maximized in some

sense. One meaningful way is the maximization of |XTX|, because maximizing this determinant

minimizes the volume of a joint confidence region of the parameters under normal distribution

of the random error e (Atkinson et al., 2007).

For convenience, the determinant |XTX| is scaled by the number of parameters in the

model and the run size. The scaled version of the determinant is designated D(A), with

D(A) = |XTX/N |1/p. We call D(A) the D-efficiency of A, thereby omitting the reference to

the interaction model. It is well known that 0 ≤ D(A) ≤ 1. D(A) = 0 if and only if the columns

of X are linearly dependent, while orthogonal columns of X give a D-efficiency of 1.

To address the joint precision of the main effects in the interaction model, we slightly modify

a criterion used by Schoen (2010) based on the concept of Ds-optimality (Atkinson et al., 2007).

For this purpose, we divide the parameter vector β in a vector β1 with main effect coefficients

and a vector β02 with the coefficients for intercept and the two-factor interactions. The model

matrix X is split in an analogous way into X1 and X02 so that y = X1β1 + X02β02 + e. A Ds

optimal design maximizes

Ds = |XTX|/|X02
TX02|, (1)
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assuming that X02 is of maximum rank. It is easy to show that

|XTX|/|X02
TX02| = |XT

1 (I −X02(X02
TX02)−1X02

T )X1|. (2)

The right hand side of (2) is the determinant of the residual sums of squares and products matrix

after regressing the main effects collected in X1 on the intercept and two-factor interactions

collected in X02. The scaled version of the determinant is designated Ds(A), with Ds(A) = D
1/n
s .

In the rest of the paper, we call Ds(A) the Ds-efficiency of A.

If X02 is indeed of maximum rank, 0 ≤ Ds(A) ≤ 1. Ds(A) = 0 if the columns of X are

linearly dependent, while Ds(A) = 1 if the main effect columns of X1 are orthogonal to each

other and also orthogonal to the intercept and two-factor interaction columns in X02.

It might seem unusual to maximize a determinant for main effect contrast vectors after

accounting for two-factor interaction contrast vectors, as carried out in (2), because this reverses

the roles of main effects and two-factor interactions. Indeed, interactions are defined as the part

of the joint effect of factors left over when main effects are accounted for. We nevertheless think

that the Ds criterion is useful as a design selection criterion in case main effects are of primary

interest. If we fit the interaction model, the main effects are unbiased by possible two-factor

interactions, and Ds captures the estimation efficiency of the unbiased main effects. Fitting

a model where interactions involving one or more of the factors are dropped will improve the

efficiency, but the main effect estimates risk bias from the omitted interactions.

Finally, our third and fourth optimality criteria are A1-efficiency and A2-efficiency, which are

average variances of main effects and interactions, respectively, scaled by σ2/N .

2.2 Candidate designs for the motivating example

To illustrate the optimality criteria outlined in the previous section, we introduce four candidate

designs for the phantom case with 40 runs and 7 factors. (The designs are available in the

supplementary materials to this paper.)

1. Using a complete set of OA(40, 7, 3), we establish that the OA reported by Schoen and

Mee (2012) is the only strength-3 OA of this size capable of fitting the interaction model.

Its D-efficiency equals 0.8030.

2. Using a procedure that is discussed later in the paper, we generated 300 D-efficient OAs

of strength 2 and include the most D-efficient array as a candidate design.

3. Using a coordinate exchange algorithm, we generated a D-optimal design.

4. Using another procedure discussed later in the paper, we generated designs with D + 2Ds

as optimality criterion. We include the best design according to this criterion as the fourth

candidate; the design is designated compromise design.
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An overview of the various efficiency measures for the candidate designs is given in Table 1.

OAs of strength 3 are Ds-optimal and A1-optimal. This follows from equation (2), because

X02
TX1 = 0. The high Ds-efficiency and A1-efficiency for the compromise design show that

this design has near orthogonality of the main effects with respect to each other and to the

interactions.

The D-efficiency of the strength-3 candidate is substantially smaller than the D-efficiency

of the D-optimal design, while the Ds-efficiency of the D-optimal design is worse than the Ds-

efficiency of the strength-3 design. The compromise design is indeed a compromise as it has

improved D- and A2-efficiencies when compared to the strength-3 design and improved Ds- and

A1-efficiencies when compared tot the D-optimal design.

The strength-2 candidate design cannot be recommended, because the D-optimal design is

better in all efficiency measures considered here.

To illustrate the connection between the various optimality criteria and the precision of indi-

vidual main effects and interactions, we present boxplots of the standard errors of the coefficients

in Figure 1, assuming an error variance of 1. We consider two model classes. The first one is

the single full interaction model in seven factors. The second class consists of the seven models

where all interactions of one particular factor are dropped from the full interaction model. We

call these models reduced models.

The upper panel of the figure shows the standard errors of the main effects. There are four

pairs of boxes, one pair for each candidate design. Each broad box shows the seven standard

errors for the full interaction model based on the respective designs. Each narrow box shows the

49 standard errors for all the main effects in the reduced models.

The minimum standard error is 1/
√

40, equalling about 0.1581. All main effects of the

strength-3 option have this minimum value. Three of the main effect standard errors of the

compromise design also have this value. The four other standard errors all equal 0.1614, which

is in between the main effects standard errors of the D-optimal design and the strength-3 design.

The strength-2 design has the worst values of the main effect standard errors.

As expected, there is no change in main effect standard errors for the reduced models based

on the strength-3 option. Remarkably, this is also the case for the compromise design. The

reason is that the main effects in this design are orthogonal to the two-factor interactions. The

Table 1: Efficiencies of four candidate designs for the motivating example.

Design D-efficiency Ds-efficiency A1-efficiency A2-efficiency
strength 3 0.8030 1 1 0.4483
strength 2 0.9245 0.8495 0.8483 0.8483
D-optimal 0.9534 0.9343 0.9248 0.9157
compromise 0.8875 0.9884 0.9767 0.6860
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Figure 1: Standard errors in interaction models based on four designs of 40 runs and 7 factors.
Broad boxes: full interaction model; narrow boxes: seven models lacking interactions of one of
the factors.

standard errors for the strength-2 option are considerably improved, while those of the D-optimal

option are also improved. The ranking of the four options regarding the main effect standard

errors does not change, however.

The lower panel in the figure shows standard errors of the 21 interaction coefficients in

the interaction model (broad boxplots) and of the 105 coefficients in the seven reduced models

(narrow boxplots). The D-optimal design is clearly superior here, while the compromise design

is intermediate between the D-optimal design and the strength-3 design. The standard errors in

the reduced models of the strength-3 and compromise designs are considerably lower than those

in the full interaction model. This shows the value of these designs in case only a subset of the

interactions is active.

The design actually used for the phantom experiment was the strength-3 option. Statistical

analysis of the results (not shown) revealed that, depending on the response variable, there were

two or three substantial main effects sized 2.5 or more times the estimated standard deviation of
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individual observations. The most substantial interactions (one or two per response) were roughly

between 0.5 and 1 times this standard deviation. These findings show that effect hierarchy

assumptions were in place here.

We would prefer the D-optimal design for cases when the focus is on the search for interactions

among a limited number of factors known to be active. The strength-2 alternative has little to

add, because it is outperformed by the three other options regarding the standard errors of the

main effects and by the D-optimal design regarding those of the interactions. If the compromise

design had been known in time, we might have recommended that design for the phantom

experiment.

3 GENERATION OF DESIGNS

3.1 Orthogonal arrays

We want to generate OAs with good D-efficiency for the interaction model. Earlier work on

D-efficient OAs (Tang and Zhou, 2013) is restricted to strength-2 OAs for the special case that

the OA is embedded in a saturated OA with N runs and N − 1 factors, while there are only

a few specified interactions of interest. In this paper, we consider the case that all interactions

are of equal interest, while the OA need not be embedded in a saturated OA. To generate OAs,

we slightly modified the algorithm of Schoen et al. (2010) (SEN). The complete source for the

system is available on the world wide web (Eendebak, 2015) as well as in the supplementary

materials. Here, we review the key elements of the original algorithm. Its goal is to obtain

a set of all OA(N,n, t). For any specific set of parameters t, N and n, there may be many

arrays. These can be partitioned in isomorphism classes. All arrays within one isomorphism

class can be obtained from each other by a sequence of row permutations, column permutations

or level permutations. These arrays are mathematically and statistically equivalent. Therefore,

it suffices to study only one instance of every isomorphism class.

The algorithm of SEN features lexicographic ordering of arrays. An array Q is lexicographi-

cally smaller than an array R if there exists a column index k > 0 such that Qk < Rk, whereas

Qi = Ri, i = 1, . . . , k−1. Here, Qk < Rk if there exists a row index m > 0 such that Qmk < Rmk

, while Qjk = Rjk, j = 1, . . . ,m− 1. So, reading column-wise, the first element for which Q and

R differ has a smaller value in Q.

For any set of parameters of an OA, the algorithm produces a minimum complete set of

arrays. This is a set with one unique representative array for each isomorphism class called the

lexicographically minimal (LM) array.

Definition 1. An array is lexicographically minimal (LM) in its isomorphism class if no row,

column, or level permutation results in a lexicographically smaller array.
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To generate a minimum complete set of OA(N,n, t), the algorithm starts with a single array

with t columns in lexicographically minimal form, which is called the root array. This array is a

representative for the single isomorphism class in OA(N, t, t). Two further steps turn a minimum

complete set of arrays with t ≤ k ≤ n − 1 columns into a minimum complete set with k + 1

columns:

1. Extension: for each array in the minimum complete set with k factors, a set of extensions

with the required strength is generated that is guaranteed to contain all LM arrays that

can be reached from the original array.

2. LM check : for each generated array, a test is performed to check whether the array is in

LM form or not. The arrays not in LM form are rejected.

SEN show that a repeated application of the two steps results in a minimal complete set

of OA(N,n, t). The arrays generated by these authors include all OA(N,n, 2) with N ≤ 28

and n ≤ 6 and all OA(N,n, 3) with N ≤ 48. So, strength-2 alternatives to the well known

OA(32, 6, 5) with run sizes up to 28 can be found by searching through the list of designs that

they generated. Similarly, Schoen and Mee (2012) found strength-3 alternatives to OA(64, 7, 4),

OA(64, 8, 4) and OA(128, 9, 4) with run sizes up to 48 by searching through the list of strength-3

designs.

To address strength-2 cases with N ≥ 32 and strength-3 cases with N ≥ 56, we restrict the

extension of arrays in the minimal complete sets. First, we partition each set in arrays that

permit fitting the interaction model and those that do not. We only extend the arrays of the

first set. The minimal complete set with extended arrays is guaranteed to contain the D-optimal

array.

If there are many arrays that permit estimation of the interaction model we applied a further

restriction. We order the arrays according to their D-efficiencies and we extend only the best

designs with an additional column. There is no guarantee that the set thus generated contains

the D-optimal array. However, it is possible to establish upper bounds for the best possible

D-efficiency of arrays that might have been generated based on the best efficiencies of the arrays

that were not extended. These bounds are based on two theorems. The first one predicts what

might happen if an array is extended with one extra column. The result is as follows:

Theorem 1. Let A be an orthogonal array with N rows and k columns that can fit the interaction

model. Let P = [AE] be an array that results from extending A with a single column E. Let

pk = 1 + k + k(k − 1)/2. Then D(P ) ≤ D(A)pk/pk+1 .

The purpose of Theorem 2 is to sharpen the bounds established by Theorem 1 by taking

previous extensions into account.
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Theorem 2. Let A be an orthogonal array in LM form. Define D(A) = |XTX/N |. Let Pi =

[AEi] be an LM orthogonal array that results from extending A with a single column Ei. Let Q

be an array that results from extending Pi with q columns and let Li = D(Pi)/D(A). Then

D(Q) ≤ LqD(Pi) (3)

with L = maxj Lj. The maximum is over all possible LM extensions Pj derived from A.

Supplementary Section A includes the proofs of the theorems. An illustration of the way

that the bounds work out is given in Supplementary Section B.

Cheng et al. (2002) established an approximate relation between the average D-efficiency of a

model containing all the main effects and g two-factor interactions, and the first two elements of

the generalized word length pattern (GWLP; Tang and Deng, 1999). The GWLP of an OA is a

vector (A3, A4, . . . , An), where Ai is the sum of squared correlations between i-factor interaction

contrast vectors and the intercept. In case g = 0.5n(n − 1), there is just one D-efficiency

to consider; the relation for this case is 1/D ∝ A3 + A4. In the supplementary Section C,

we confirm that the best D-efficiencies indeed are found for designs with small A3 + A4. It is

important to note that the relation between D and A3 on its own is much weaker. So a minimum

G2-aberration design, which minimizes the elements of the GWLP from left to right, does not

necessarily have the best D-efficiency.

3.2 Optimal designs

We implemented a coordinate exchange algorithm in Python and Matlab. The algorithm is

slightly more complicated than the original algorithm of Meyer and Nachtsheim (1995). It

optimizes O = α1D + α2Ds, where D and Ds are defined in Section 2.1. A specification of the

algorithm is given in the supplementary Section D. The implementations are available in further

supplementary materials.

For all cases where we generated D-efficient orthogonal arrays, we also generated D-optimal

designs for the interaction model using the Python implementation with α2 = 0 and 5,000 initial

tries. To generate compromise designs, we need to set the parameters α1 and α2 in our exchange

algorithm. We set α1 = 1 and made seven-factor designs in 40 runs for α2 ranging from 0 up to

6 in steps of 0.2. We repeated the process with eight-factor designs in 80 runs. We found that

the Ds-efficiencies of the designs became stable for α2 ≥ 2, while, for the 80 run designs, the

D-efficiencies slightly decreased from that value onward. For these reasons, we used α1 = 1 and

α2 = 2 to construct the compromise designs. See supplementary Section D for more details.

Our compromise designs are intended for situations where main effects are more likely to

be important than two-factor interaction effects. They permit efficient estimation of the full

interaction model, because the D-efficiency is included in the goal function to be optimized. At
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the same time, they favor estimation of main effects independently from two-factor interaction

by the inclusion of Ds in the goal function. Therefore, they can be considered as model-robust

designs. The most important difference between our approach and earlier approaches to model

robust designs is that the run sizes we consider permit estimation of the full interaction model.

Therefore, no special attention is needed to account for nonestimable models, such as in Du-

Mouchel and Jones (1994), Li and Nachtsheim (2000) and Smucker et al. (2012), or aliasing

between primary and potential model terms such as in Jones and Nachtsheim (2011).

4 GENERATED DESIGNS

The strength-2 OAs we generated have 6–8 factors and 32–44 runs. An OA to estimate the

interaction model in 9 factors requires at least 48 runs. It was infeasible to do even a partial

enumeration of strength-2 arrays with this run size or larger run sizes because of the very large

numbers of nonisomorphic arrays (even for the extension of an array with a single column).

As regards OAs with a strength t ≥ 3, there is a single OA(32, 6, 5), which naturally permits

estimation of the interaction model with maximum D-efficiency. For n ≥ 7, strength-3 arrays for

the interaction model only exist for run sizes N ≥ 40. We generated D-efficient OAs of strength

3 in up to 10 factors requiring up to 72 runs.

Unlike OAs, D-optimal designs and compromise designs are not restricted to run sizes that

equal multiples of 4 (strength-2 OAs) or 8 (strength-3 OAs). However, for direct comparisons

with OAs, we generated optimal and compromise designs for run sizes 28 ≤ N ≤ 72 equalling a

multiple of 4.

4.1 Strength-2 arrays and alternative designs

Table 2 shows selected results for the strength-2 OAs and alternative designs. For the alternatives

to OAs, we used our optimal design software with 5,000 initial tries and we kept the best design

either according to D-efficiency or to the compound criterion D + 2Ds. The OA series with five

factors were fully generated (results not shown). OA series with n > 5 factors were partially

generated by extending only a small fraction of the designs with n − 1 factors based on their

D-efficiency. To get an appreciation of the arrays that were missed in a partial generation, we

studied for N = 32 fully generated as well as partially generated series of OAs; more details

are given in the supplementary Section E. That section also shows comprehensive results on

generated OAs with other run sizes and numbers of factors.

The first two columns of Table 2 give the run size N and the number of factors n. The third

column shows the type of design, which is either an OA, a D-optimal design or a compromise

design. Then, we show the D-efficiency of the designs. For OAs we subsequently provide an upper

bound on D-efficiencies for arrays that might have been obtained if the series were generated
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Table 2: Strength-2 arrays and alternative designs

N n Type D B Ds A1 A2

32 6 OA 1 1 1 1 1
D-optimal 1 1 1 1
compromise 1 1 1 1

32 7 OA 0.8432 0.8432 0.8131 0.8004 0.6150
D-optimal 0.8868 0.8325 0.8094 0.7600
compromise 0.8033 0.9406 0.9188 0.4796

36 6 OA 0.9374 0.9374 0.8713 0.8696 0.8696
D-optimal 0.9773 0.9659 0.9612 0.9589
compromise 0.9743 0.9884 0.9778 0.9476

36 7 OA 0.9022 0.9389 0.8000 0.8000 0.8000
D-optimal 0.9369 0.9506 0.9476 0.8545
compromise 0.8716 0.9836 0.9699 0.6420

40 7 OA 0.9245 0.9414 0.8495 0.8483 0.8483
D-optimal 0.9534 0.9343 0.9248 0.9157
compromise 0.8875 0.9884 0.9767 0.6860

40 8 OA 0.8019 0.9516 0.6411 0.6019 0.5373
D-optimal 0.8517 0.6967 0.6788 0.7236
compromise 0.7463 0.9734 0.9503 0.3575

44 7 OA 0.9449 0.9531 0.8926 0.8864 0.8864
D-optimal 0.9563 0.9381 0.9380 0.8953
compromise 0.9113 0.9895 0.9792 0.7737

44 8 OA 0.8524 0.9567 0.7789 0.7721 0.6593
D-optimal 0.8800 0.8010 0.7927 0.7691
compromise 0.8034 0.9796 0.9596 0.4806

fully. This bound, designated B, was obtained using Theorem 1 and Theorem 2 of Section 3.1.

The final three columns in Table 2 show the Ds-, A1- and A2-efficiencies obtained.

The designs generated with the optimal design software were all nearly orthogonal; the small-

est efficiency for the main-effects only model equals 0.9761.

The results for 32 runs and six factors show that the best designs obtained with any of the

three methods all have a D-efficiency equalling 1. They correspond to the unique OA(32, 6, 5).

The fact that the optimal design software returns a design that is known to be best in terms

of D-efficiency and Ds-efficiency shows that the implementation is sufficiently powerful to find

efficient designs.

The tabulated results on OAs with N ≥ 36 are based on partially generated series. Although

the generation is only partial, the series of OA(36, 6, 2) includes an array with the best possible

D-efficiency of the interaction model. The seven-factor series have discrepancies of at most 0.0367

between the D-efficiency in the best array obtained and the upper bound.

For the best OA(40, 8, 2) and the best OA(44, 8, 2), the upper bound B is higher by 0.1487

and 0.1043, respectively. These are substantial discrepancies. However, in both cases, the D-

optimal design generated has a higher D-efficiency by 0.0498 and 0.0276, respectively. This
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suggests that the upper bound for these two instances is particularly weak. Further, we show

in supplementary section F.1 that the best OAs actually obtained are competitive with the best

strength-2 arrays known from the literature. We therefore did not search for better OAs.

As expected, the D-optimal designs have a better D-efficiency than the OAs. The largest

discrepancy is the one stated above for OA(40, 8, 2). In general, orthogonal arrays of strength

2 do not seem to be particularly favorable to estimate all the interactions or to estimate main

effects independently from interactions, because all efficiencies for the D-optimal options are

better than the efficiencies of the corresponding OAs. One notable seven-factor exception will

be discussed in Section 5.1.

The compromise designs generally have the smallest D-efficiency of the three types of design.

The most substantial discrepancy with respect to the D-optimal design again occurs for the case

of 40 runs and 8 factors; the difference in efficiencies is 0.1054.

The differences in Ds-efficiencies between the compromise designs and the D-optimal designs

can be substantial. Particular examples are the designs for 32 runs and 7 factors, 40 runs and

8 factors and 44 runs and 8 factors. The Ds-efficiencies along with A1- and A2-efficiencies of

these designs show that the D-optimal designs should be preferred if the goal of the experiment

is to estimate interactions, while the compromise designs should be preferred if one wishes to

estimate main effects independently from interactions.

4.2 Strength-3 arrays and alternative designs

Table 3 shows results for the strength-3 OAs and alternative designs. The table has the same

layout as the one for the strength-2 OAs plus alternatives. For these alternatives, we used our

optimal design software with 5,000 initial tries and we kept the best design either according to

D-efficiency or to the compound criterion D + 2Ds.

For the 40-run and 48-run OAs we used a complete enumeration. For the 56-run arrays, we

completely generated the series with eight-factor arrays. Nine-factor arrays were only generated

by extension of the 10,491 eight-factor arrays that support an interaction model. The extension

resulted in only 28 nine-factor arrays that permit fitting an interaction model in this number of

factors. Further extension resulted in a single ten-factor array. However, it is not possible to fit

an interaction model based on this array. For the 64-run arrays, we completely generated the

series with six factors. We extended all 326 arrays that support an interaction model. From seven

factors onward, we retained at most a few thousands of arrays that support an interaction model.

For the 72-run arrays, we again started with generating all six-factor arrays. We extended all

872 arrays that support an interaction model. Extension of these arrays resulted in more than

two million seven-factor arrays. From seven factors onward, we retained only a part of the arrays

that support an interaction model. We obtained five nine-factor arrays and we failed to obtain

a ten-factor array. Details on the numbers of generated OAs and cutoffs used can be found in
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Table 3: Strength-3 arrays and alternative designs

N n Type D B Ds A1 A2

40 7 OA 0.8030 0.8030 1 1 0.4483
D-optimal 0.9534 0.9343 0.9248 0.9157
compromise 0.8875 0.9884 0.9767 0.6860

40 8 OA 0 0 1 0 0
D-optimal 0.8517 0.6967 0.6788 0.7236
compromise 0.7463 0.9734 0.9503 0.3575

48 7 OA 0.9585 0.9585 1 1 0.8750
D-optimal 0.9646 0.9500 0.9459 0.9251
compromise 0.9585 1 1 0.8750

48 8 OA 0.8365 0.8365 1 1 0.5973
D-optimal 0.9053 0.8222 0.8099 0.8034
compromise 0.8450 0.9859 0.9718 0.6043

48 9 OA 0.6753 0.6753 1 1 0.1439
D-optimal 0.7951 0.5875 0.5574 0.5861
compromise 0.7250 0.8759 0.8564 0.3440

56 7 OA 0.9192 0.0192 1 1 0.7826
D-optimal 0.9757 0.9626 0.9609 0.9504
compromise 0.9585 0.9912 0.9825 0.8903

56 8 OA 0.8642 0.8642 1 1 0.6478
D-optimal 0.9547 0.9114 0.8992 0.9034
compromise 0.9040 0.9903 0.9806 0.7396

56 9 OA 0.7610 0.7610 1 1 0.4522
D-optimal 0.8723 0.7746 0.7600 0.7271
compromise 0.8067 0.9256 0.9139 0.5363

64 8 OA 1 1 1 1 1
D-optimal 1 1 1 1
compromise 0.9780 1 1 0.9393

64 9 OA 0.9254 0.9626 1 1 0.8070
D-optimal 0.9190 0.8097 0.8020 0.8410
compromise 0.8831 0.9782 0.9681 0.7006

64 10 OA 0.8247 0.9692 1 1 0.5559
D-optimal 0.8371 0.7074 0.6850 0.6494
compromise 0.7604 0.8864 0.8734 0.4290

72 8 OA 0.9283 0.9439 1 1 0.8160
D-optimal 0.9824 0.9759 0.9712 0.9668
compromise 0.9730 0.9926 0.9855 0.9404

72 9 OA 0.8818 0.9391 1 1 0.6926
D-optimal 0.9473 0.8844 0.8807 0.8931
compromise 0.9117 0.9655 0.9599 0.7733

72 10 OA 0 0.9369 1
D-optimal 0.8935 0.7752 0.7619 0.7708
compromise 0.8180 0.9330 0.9239 0.5516

supplementary Section E.

The designs generated with the optimal design software were all nearly orthogonal; all D-

efficiencies for the main effects only model were larger than 0.95.
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The seven-factor OA in 48 runs is markedly better than the 40-run OA used in the motivating

example. We prefer this OA to the D-optimal design of the same run size because the OA’s Ds-

efficiency is better, while its D-efficiency is only slightly less. The compromise design happens

to be isomorphic to the OA.

The table shows two 64-run designs for 8 factors with a D-efficiency of 1. So these are

strength-4 OAs. The compromise design is a strength-3 OA with a D-efficiency near 1, so that

it has almost a strength of 4.

For the nine-factor OAs in 64 runs, the best D-efficiency found is 0.0372 lower than the upper

bound, while the discrepancy is 0.1445 for the ten-factor arrays. However, the D-efficiencies

obtained are very near those of the D-optimal designs; one is slightly worse and one is even

slightly better. In addition, as shown in the Supplementary Section F for nine factor OAs and in

Section 5 for ten-factor OAs, those we did obtain are competitive with the best literature arrays.

For these reasons, we did not intensify the search of good OAs for nine or ten factors.

For the 72-run OAs, the discrepancy between the best D-efficiency and the upper bound for

eight and nine factor arrays is 0.0156 and 0.0573, respectively. Our failure to find a 72-run ten-

factor array did not prompt us to extend more than the few hundred seven-factor or eight-factor

arrays with this run size, because even a few arrays extra lead to millions of new extensions. We

believe that 72 is the maximum run size for which our methodology can yield useful OAs. Note

that the compromise design of 10 factors has good Ds and A1-efficiencies, while the D-optimal

10-factor design has a good D-efficiency. However, A2-efficiencies are not particularly good.

A further comparison among the designs in Table 3 leads to the following conclusions.

• The D-optimal designs have A1-efficiencies that are nearly the same as their A2-efficiencies.

• The D-optimal designs have substantially better D- and A2-efficiencies than OAs of the

same run size and number of factors. Exceptions are the 64-run cases of 9 and 10 factors

and the OA(48, 7, 3).

• D-optimal designs generally have substantially worse Ds and A1-efficiencies than the com-

promise designs and the OAs.

5 STUDY OF SPECIFIC CASES

We studied the standard errors in the interaction models based on the most efficient designs in

7–10 factors that we found. We compared our OAs with the smallest orthogonal arrays from

the literature. Many of the new OAs are smaller, or have a higher D-efficiency, or have smaller

standard errors for the coefficients, than the literature OAs. The OAs were contrasted with D-

optimal designs and compromise designs. In general, we prefer designs for which the maximum

standard error, either of the main effects or of the interactions, is minimized over the competing
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designs of the same run size. All the designs studied are available in the supplementary materials

for this paper. Section F includes a comprehensive table with efficiency measures and a discussion

of the eight-factor and nine-factor cases. Seven-factor and ten-factor cases are presented here.

5.1 Seven factors

The two earliest literature OAs that we were able to find for the interaction model in seven factors

have 48 runs, a strength of 2, a D-efficiency of 0.9222 and Ds-efficiencies of 0.8187 and 0.8823,

respectively; see Mee (2009, p. 291) and Addelman (1961) for their construction. Schoen and

Mee (2012) recommended seven-factor arrays of strength 3 in 40 and 48 runs capable of fitting

the interaction model. These correspond to the strength-3 arrays characterized in Table 3. The

48-run OA has a D-efficiency of 0.9585 and a maximum Ds-efficiency, while the best seven-factor

arrays of strength 2 and 40 or 44 runs from Table 2 have D-efficiencies of 0.9245 and 0.9449, and

Ds-efficiencies of 0.8495 and 0.8926, respectively. So these alternatives have a better D-efficiency

and either a greater strength or a smaller run size than the two earliest literature arrays.

In the remainder of this section, we restrict attention to 32-run and 36-run designs. While

their D-efficiencies are smaller than those of the earlier literature designs, their run size is also

smaller. The 32-run OAs are the smallest possible orthogonal arrays that support the interaction

model for seven factors. The 36-run designs allow 7 residual degrees of freedom to conduct t tests,

assuming that higher-order effects are negligible.

Five OA(32, 7, 2) have the globally best D-efficiency for OAs of this size, which equals 0.8432.

The D-efficiency for the best 36-run OA we found is 0.9022. Assuming an error variance of 1,

we calculated standard errors of the coefficients in the interaction model for the five best 32-run

OAs, the 36 run OA, the D-optimal designs and the compromise designs of the same run sizes.

Figure 2 shows the results. The upper panel in the figure is a dotplot of the standard error of

the main effects, while the lower panel shows boxplots for the interactions. In the online version

of the paper, the results for OAs are in brown-red, those for the D-optimal designs in green and

those for the compromise designs in purple.

For the 32-run designs, the best design to estimate main effects independently from two-factor

interactions is the compromise design, because it minimizes the maximum standard errors for the

main effects as well as the A1-efficiency. In case many interactions are likely to be substantial,

we recommend the D-optimal design. This design minimizes the maximum standard error for

interactions when compared with the alternative designs, while the standard errors also have a

smaller range. There is no clear reason to recommend a 32-run OA, as judged by these standard

errors or those of the main effects.

The most remarkable feature of Figure 2 is the complete uniformity of standard errors based

on the 36-run design. Indeed, standard errors for all the main effects and all the two-factor

interactions equal 0.1860. As this value also minimizes the maximum standard error of the
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Figure 2: Standard errors for the coefficients of interaction models based on seven-factor designs
of 32 or 36 runs. OA: orthogonal array of strength 2; D: D-optimal design; C: compromise design.

interactions, we would favor the OA in case the primary interest is in estimating interactions, even

though the A2-efficiency of the OA is 0.0545 less than for the D-optimal design (see Table 2). The

compromise design has slightly smaller standard errors for the main effects than the D-optimal

design, but the large standard errors of the interactions make us prefer the OA.

5.2 Ten factors

A ten-factor design that supports the interaction model must have at least 56 runs. Our work

shows that there are no such strength-3 OAs. Our software returned D-optimal and compromise

designs with D-efficiencies of 0.7492 and 0.6373 and Ds-efficiencies of 0.5275 and 0.8070, respec-

tively. We think that these values are too low to recommend these designs. We obtained 60-run

D-optimal and compromise designs with D-efficiencies of 0.7978 and 0.7100 and Ds-efficiencies

of 0.6309 and 0.8627, respectively. However, it is usually prudent to include a few extra runs

for model checking or estimation of random error. So it is natural to consider 64-run or 72-run

designs.

The 64-run strength-3 OA given by Mee (2004), designated 64 (OA5), is the smallest and

most D-efficient literature orthogonal design in 10 factors capable to fit the interaction model.
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Figure 3: Standard errors in ten-factor designs of 64 and 72 runs. OA: orthogonal array of
strength 3; D: D-optimal design; C: compromise design. D-efficiencies of OAs are 0.8247 (OA1)
and 0.8238 (remaining OAs).

Its D-efficiency equals 0.8238. For reasons explained below, our enumeration did not include this

design. However, we found three other designs with the same D-efficiency and one design with

a slightly higher D-efficiency of 0.8247.

Figure 3 shows the standard errors of based on the five 64-run OAs, the D-optimal and

compromise alternative designs, and 72 run D-optimal and compromise designs. A 72-run OA

to fit the interaction model was not obtained; see Section 4.2.

The smallest standard errors for the main effects are reached for the compromise 72-run

design, while the smallest standard errors for the interactions are reached for the 72-run D-

optimal design. If budget allows, we prefer these designs to the 64-run alternatives.

For the 64-run cases, it is obvious that all OAs are equally good regarding the main effect

standard errors, while the compromise design does better than the D-optimal design and worse

than the OAs. As the compromise design has inferior standard errors for the interactions as

well, it is not recommended. We prefer OA3 or OA4 if we want to estimate the main effects

independently from the two-factor interactions, because the maximum standard error for the

interactions is minimal in these OAs. OA3 and OA4 are nonisomorphic, but as it turns out, they
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have the same frequency distribution of standard errors for the interactions.

The first seven columns of the lexicographically minimal version of design 64 (OA5) form a

seven-factor design with a D-efficiency of 0.9310. In our enumeration, we did not extend 64-run

seven-factor OAs with a D-efficiency of 0.9410 or less; see supplementary Section E. This explains

why design 64 (OA5) was not included in our list of 10-factor designs. The finding illustrates

that extension of two k-factor OAs A1 and A2, where D(A1) < D(A2) can lead to extended

designs A+
1 and A+

2 for which the order of D-efficiencies is reversed.

Finally, the set of standard errors for the interactions based on the D-optimal 64-run design

is much more homogeneous and also has a smaller maximum than the corresponding sets for

the OAs. As the D-efficiency of the D-optimal design is very similar to the best efficiency

of a strength-3 OA, the standard errors of the main effects based on the D-optimal designs

are considerably higher. We conclude that the optimal design is the preferred choice to assess

two-factor interactions, while the OAs are preferred if we want to estimate the main effects

independently from the two-factor interactions.

6 DISCUSSION

In this paper, we studied two-level experiments large enough to estimate a model with all the

main effects and all the two-factor interactions. The assumption of effect hierarchy suggests

that there are not so many two-factor interactions active, and that the size of active two-factor

interactions is considerably smaller than the size of the main effects. Under these conditions, it

makes sense to estimate main effects unbiased by possible two-factor interactions. We considered

approaches based on orthogonal arrays and optimal designs.

Strength-3 OAs have maximum main effect precision irrespective of the number of interactions

in the model. Therefore, the most D-efficient OA of strength 3 is an attractive option under effect

hierarchy. If the priority of the experimenter is on detecting or estimating two-factor interactions,

we would generally recommend D-optimal designs, because these have better precisions for these

interactions.

Strength-2 OAs have maximum precision of the main effects only if no interactions are active.

D-optimal designs for the interaction model were nearly orthogonal for the main-effect only

model. In addition, these designs have a better precision for the interaction coefficients. For

these reasons, we generally do not recommend a strength-2 OA to fit the interaction model, with

one notable exception: we found an OA(36, 7, 2) for which all standard errors in the interaction

model are equal. The D-optimal design we found has several standard errors for interactions

that are higher than the standard error in the OA. Therefore, we recommend the OA for this

case.

To attain a better Ds-efficiency when using an optimal design approach, we implemented
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a coordinate exchange procedure that optimizes α1D + α2Ds. The results presented here were

obtained with the settings α1 = 1 and α2 = 2. The designs are a compromise between D-optimal

designs and strength-3 OAs, both in terms of D-efficiency (D-optimal designs are generally better

and strength-3 OAs worse) and Ds-efficiency (D-optimal designs are substantially worse and

strength-3 OAs are better).

As the Ds-efficiency of the compromise designs is generally better than the Ds-efficiency of

strength-2 OAs, the compromise designs provide an attractive alternative to these OAs under

effect hierarchy. Further, as the run size increases, it becomes increasingly difficult to obtain good

strength-3 OAs, and compromise designs could be used instead. The compromise designs have

the general advantage that they can be constructed for every run size that is compatible with

fitting the interaction model. Interesting subjects for further research include the adaptation of

this optimal design approach to fitting other models than the complete interaction model and

optimization of this approach for larger cases than those studied here. Further, we might reverse

the roles of main effects and two-factor interactions in our expression for Ds. By replacing the

original Ds with this modification in our criterion for compromise designs, we could prioritize

interactions over main effects.

One problem in the generation of D-efficient OAs is the huge amount of different designs.

The largest strength-2 case that we could handle completely is OA(32, 7, 2) with 530,469,996

different designs, while the largest strength-3 case is OA(48, 9, 3) with 166,081 different designs.

This was the reason to develop a partial enumeration approach. We established upper bounds

for the best possible D-efficiency of arrays that were not generated. Our approach resulted in

smaller or more efficient alternatives to literature designs. We believe, however, that we reached

the limits of its usefulness for the OAs with 10 factors and 64 or 72 runs.

Further interesting subjects for future research include exploration of multilevel designs either

with our partial enumeration approach for orthogonal designs or with the compromise optimal

design approach. For example, for four three-level factors (33 parameters in the interaction

model), our methodology might yield a suitable 36-run design. For five factors (51 parameters

in the interaction model), the nearest run size for an orthogonal design is 54. Sartono et al.

(2012) showed that the four strength-3 designs of this size do not support the interaction model.

Our methodology might give strength-2 designs or compromise designs of this run size that are

capable of estimating this model. For six factors (73 parameters in the interaction model), there

are strength-3 designs in 81 runs that support the interaction model (Sartono et al., 2012) so

that our methods are less likely to be useful here.

SUPPLEMENTARY MATERIAL

Additional Results: Proofs and applications of the theorems, relationship between D-efficiency

and GWLP, details of the coordinate exchange algorithm, of the generation of OAs and of
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specific eight-factor and nine-factor designs.

Programs: Software to generate OAs, D-optimal designs and compromise designs.

Designs: Designs for 7-10 factors studied in Section 5 and supplementary Section F.
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