
A canonical form for non-regular arrays based on

generalized wordlength pattern values of

delete-one-factor projections

P.T. Eendebak∗

April, 2014

Abstract

We introduce a canonical representative for the isomorphism classes of

non-regular orthogonal arrays based on the generalized wordlength pat-

terns (GWLP) of delete-one-factor projections. These GWLP values have

been used recently to introduce a fast isomorphism test for two-level regu-

lar arrays. We show that the delete-one-factor projection GWLP method

can be adopted to reduce both regular and non-regular orthogonal arrays

to canonical form.

The new canonical form is used in an existing framework to generate

minimal complete sets of non-symmetric non-regular arrays. We show

that the new method is efficient for reduction to canonical form, but not

suitable for generating minimal complete sets.

KEY WORDS: Experimental Design; Orthogonal Array; Delete-one-factor;

Canonical form; Generalized Wordlength Pattern

∗E-mail: pieter.eendebak@gmail.com. Address: University of Antwerp, Departement En-
gineering Management, Prinsstraat 13, 2000 Antwerp, Belgium.

1

1 Introduction

Orthogonal arrays are an important tool in the design of experiments [6]. For-

mally, an orthogonal array of strength t is an N × k matrix whose jth column

contains sj different factor-levels in such a way that, for any t columns, every

t-tuple of levels appear equally often in the matrix [9]. Two arrays are said to

be isomorphic if one array can be obtained by permuting rows, columns, and/or

factor levels of the other array.

A major step in the analysis of orthogonal arrays is to generate represen-

tatives for all isomorphism classes of a specific type of orthogonal arrays. The

type is usually specified by the number of runs, the number of factors, the factor

levels and the strength. A minimal complete set (MCS) for a specific type of

arrays is a set of arrays with exactly one representative for each isomorphism

class.

A generic method for generating these isomorphism classes is to start with a

minimal complete set of arrays with a specified number of columns, say k, and

then extend this set to a complete set of arrays with k + 1 columns. In this

method two main components can be identified:

• Extension A method is specified to generate arrays with k + 1 columns

from the set of arrays with k columns. This method must guarantee that

for each isomorphism class for k+ 1 columns at least 1 array is generated.

• Reduction From the set of generated arrays a minimum complete set

has to be generated. This can be done by either transforming the arrays

to a canonical form or comparing the arrays pairwise and performing an

isomorphism check.

The most basic isomorphism check between two arrays is to test all possible

transformations of one of the arrays (exhaustive isomorphism testing). This

includes row, column and level permutations. An isomorphism check using this

method is computationally very expensive.

2

We present a short overview of other works using the extension and reduc-

tion method. The extension method was used by Chen et al. [2] for symmetrical

regular designs. Their extension method and reduction method use properties

specific to regular designs. Sun et al. [12] present an algorithm to construct all

non-isomorphic two-level designs of specified run-size and numbers of factors.

Like Chen et al. [2], the authors start with a minimum complete set of designs

with a certain number of factors and they consider all possible extensions with

one additional column. The resulting designs are then classified with the ex-

tended word-length pattern [3]. Those belonging to the same class are further

tested with algebraic techniques.

By defining canonical forms for the isomorphism classes the reduction step

can be performed more efficiently. Canonical forms for non-symmetric arrays

are presented by Bulutoglu and Margot [1] and Schoen et al. [11]. The canonical

form in [1] is based on a canonical form for graphs based on Nauty [7, 8] while

the canonical form in [11] is based on the lexicographic ordering of arrays. Both

approaches lead to the same representatives for the isomorphism classes.

Recently, a series of papers has appeared [13, 10] which use the GWLP values

of delete-one-factor projections as an alternative ordering of the columns. Using

this method impressive results have been obtained for regular fractional factorial

arrays. The new ordering can be extended to non-symmetric as well as non-

regular arrays.

In Section 2 we introduce generalized wordlength patterns, delete-one-factor

projections and the new canonical form for orthogonal arrays. Using this canon-

ical form a new method to generate minimal complete sets is presented based on

the generic framework described above. In Section 3 we compare the efficiency

of the new method to the method of Schoen et al. [11].

3

2 Method

In this section we introduce delete-one-factor projections and generalized wordlength

patterns and we define the canonical form for non-regular arrays. We modify

the framework in [11] to generate all isomorphism classes of non-symmetric

non-regular orthogonal arrays.

2.1 Preliminaries

To describe the modified algorithm, we need some definitions. We first introduce

orthogonal arrays. Next, we introduce GWLPs (the theory here is from Xu and

Wu [14]) and the ordering of arrays leading to canonical forms.

Definition 1. A symmetric orthogonal array (OA) of strength t, N runs and

k factors at s levels is an N × k array of 0, . . . , (s− 1)-valued symbols such that

for every t columns every t-tuple occurs equally often [9]. The set of all OAs

with given strength, runs and levels is denoted by OA(N ; sk; t).

Two arrays are said to be combinatorially isomorphic if one array can be

obtained by permuting rows, columns, or factor levels of the other array.

An N × k design D consists of a set of row vectors of length k. For two

row vectors in D, say a and b, we denote by dH(a, b) for the Hamming distance

between a and b. We define the binomial coefficients as
(
n
k

)
= n!/((n − k)!k!).

We use the convention that 0! = 1.

Definition 2 (Distance distribution). Let D be an N × k matrix. For j =

0, . . . , k we define

Bj(D) = N−1|{(a, b) : dH(a, b) = j, a ∈ D, b ∈ D}|.

The distance distribution ofD is defined as (B0(D), . . . , Bk(D)). The MacWilliams

4

transforms of the distance distribution are defined as

B′j(D) = N−1
k∑
i=0

Bi(D)Pj(i; k, s)

where Pj(x; k, s) =
∑j
i=0(−1)i(s − 1)j−i

(
x
i

)(
k−x
j−i
)

are the Krawtchouk polyno-

mials.

Definition 3 (Generalized Wordlength Pattern). For an (N, sk)-design D the

generalized wordlength pattern ofD is equal toA(D) = (B′0(D), B′1(D), . . . , B′k(D)).

For regular 2-level arrays the value Ai(D) is equal to the number of words

of length i in the defining contrast subgroup of D [13]. For any 2-level array

our definition of the generalized wordlength pattern is equivalent to

Ai(D) = N−2
∑

wt(u)=i

|Ju(D)|2 (1)

with the J-characteristic Ju(D) =
∑
x∈D(−1)〈u,x〉. The summation in Equa-

tion 1 is over all k-tuple binary vectors u with i nonzero elements.

Definition 4 (GWLP ordering). Let a = (a0, . . . , ak) and b = (b0, . . . , bk) be

two generalized wordlength patterns. We order the GWLPs by the lexicographic

ordering. So a < b if there is an l such that aj = bj for j = 1, . . . , l − 1 and

al < bl.

In statistical applications, designs with a small GWLP are desirable. The

arrays with strength t have a0 = 1 and a1 = . . . = at = 0.

Let X be an N × k array. For 1 ≤ j ≤ k we define πj(X) to be the array

obtained by deleting the jth column from X. With dj(X) we denote the GWLP

of πj(X).

2.2 Canonical form

We introduce several orderings of the set of orthogonal arrays. For each isomor-

phism class of OA(N ; s; t) an ordering defines a unique minimal element. The

5

minimal element for each isomorphism class defines a canonical form for that

particular isomorphism class.

Definition 5 (LMC ordering). Let X and Y be two N × k arrays. Let x be

the N · k tuple obtained by concatenating the columns of X, let y be the tuple

obtained by concatenating the columns of Y . We define X to be smaller than Y

in the LMC ordering (lexicographically minimum in columns ordering) if there

is an l ≤ Nk such that xi = yi for i < l and xl < yl.

The LMC ordering was used in [11].

Definition 6 (Delete-one-factor ordering). Let X and Y be two N × k arrays.

We define X to be smaller than Y in the delete-one-factor ordering if there

is an l such that dj(X) = dj(Y) for j = 1, . . . , l − 1 and dl(X) < dl(Y) or

dj(X) = dj(Y) for j = 1, . . . , k and X is lexicographically smaller than Y .

The delete-one-factor ordering is based on the GWLPs of the delete-one-

factor projections and on the LMC ordering. This new ordering defines for each

isomorphism class a unique element which is minimal according to this ordering.

Example 1 (Delete-one-factor values). Consider the following array in lexico-

6

graphically minimal form in OA(12; 27; 2)

X =



0 0 0 0 0 0 0

0 0 0 0 0 1 1

0 0 1 1 1 0 1

0 1 0 1 1 0 1

0 1 1 0 1 1 0

0 1 1 1 0 1 0

1 0 0 1 1 1 0

1 0 1 0 1 0 0

1 0 1 1 0 1 1

1 1 0 0 1 1 1

1 1 0 1 0 0 0

1 1 1 0 0 0 1



.

The delete-one-factor generalized wordlength patterns are given by:

Deleted column GWLP

1 d1(X) = (1, 0, 0, 2.22, 1.67, 0.444, 0)

2 d2(X) = (1, 0, 0, 2.22, 1.67, 0.444, 0)

3 d3(X) = (1, 0, 0, 2.22, 1.67, 0.444, 0)

4 d4(X) = (1, 0, 0, 2.22, 1.67, 0, 0.444)

5 d5(X) = (1, 0, 0, 2.22, 1.67, 0.444, 0)

6 d6(X) = (1, 0, 0, 2.22, 1.67, 0.444, 0)

7 d7(X) = (1, 0, 0, 2.22, 1.67, 0.444, 0)

Since the delete-one-factor values are not ordered, this array is not in minimal

according to the delete-one-factor ordering. N

Using the delete-one-factor ordering, we can create a powerful algorithm to

reduce an array from OA(N ; sk; t) to minimal form. This algorithm basically

consists of 2 steps: sorting the columns using the delete-one-factor GWLPs

and then reducing the array further using LMC ordering. The algorithm is

summarized in Algorithm 1.

7

Delete-one-factor reduction

Input: Orthogonal array X
Output: Delete-one-factor canonical form of the array

1. For each column k, calculate the delete-one-factor GWLP dk(X).
Sort the columns of the array in increasing order of the delete-one-
factor GWLPs.

2. Reduce the resulting array to lexicographically minimal form while
respecting the ordering imposed by the delete-one-factor GWLPs.

Algorithm 1: Delete-one-factor reduction

The first step can be performed by calculating the delete-one-factor GWLPs

and sorting these using the ordering on GWLPs. Next, we explain how to

perform the reduction while respecting the ordering. Let X be an array in

OA(N ; sk; t) and assume the columns have been ordered with the delete-one-

factor ordering. The delete-one-factor GWLPs can be written as d1(X), . . . , dk(X)

where d1(X) ≤ d2(X) ≤ . . . ≤ dk(X). Let b = (b1, . . . , bn) be the vector such

that d1(X) = d2(X) = . . . = db1(X), db1+1(X) = db1+2(X) = . . . = db1+b2(X),

etc. We can then consider the array in OA(N ; sk; t) to be an element from

OA(N ; sb1sb2 · · · sbn ; t). We reduce this array to lexicographically minimal form

using the method of [11]. The software used contains functions [5, see the

arraydata_t structure] to impose the ordering of the columns. These functions

set the column structure of the array equal to the structure of the symmetry

group obtained from the delete-one-factor projections.

The method described above has a computational advantage over the original

LMC method. Since the columns with different delete-one-factor values cannot

be interchanged any more, the number of column permutations that has to be

checked in order to perform the reduction to minimal form is greatly reduced.

This is illustrated in Example 3 on page 13.

Definition 7. Let ρ be a method for reducing an array to some canonical form

and let π−1() be the projection of an array onto the first k − 1 factors (by

deletion of the last column). We say that the canonical form ρ is stable under

8

column extensions if for any extension Y of X we have

ρ(X) = π−1(ρ(Y)). (2)

The LMC canonical form of an array is stable under column extensions. The

delete-one-factor form is not stable, as illustrated in Example 2.

Example 2 (Delete-one-factor canonical form). Let the strength 2 orthogonal

array Y be defined by

Y =



0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 1 0 1 1 0

0 0 1 1 1 0 0

0 1 0 1 0 1 1

0 1 0 1 1 0 1

0 1 1 0 1 1 1

0 1 1 1 0 1 0

1 0 0 1 1 1 0

1 0 0 1 1 1 1

1 0 1 0 0 1 1

1 0 1 1 0 0 1

1 1 0 0 0 1 0

1 1 0 0 1 0 0

1 1 1 0 1 0 1

1 1 1 1 0 0 0


and let X = π−1(Y) be the matrix obtained by deleting the last column from

Y . The array Y is in canonical form for the delete-one-factor ordering. The

9

delete-one-factor GWLP values are

d1(Y) = (1.00, 0.00, 0.00, 1.50, 1.00, 0.50, 0.00),

d2(Y) = (1.00, 0.00, 0.00, 1.50, 1.00, 0.50, 0.00),

d3(Y) = (1.00, 0.00, 0.00, 1.50, 1.00, 0.50, 0.00),

d4(Y) = (1.00, 0.00, 0.00, 1.75, 0.75, 0.25, 0.25),

d5(Y) = (1.00, 0.00, 0.00, 1.75, 0.75, 0.25, 0.25),

d6(Y) = (1.00, 0.00, 0.00, 2.00, 1.00, 0.00, 0.00),

d7(Y) = (1.00, 0.00, 0.00, 2.00, 2.00, 0.00, 0.00).

Hence, the GWLP values are ordered. However,

d1(X) = (1.00, 0.00, 0.00, 1.00, 0.50, 0.00),

d2(X) = (1.00, 0.00, 0.00, 1.00, 1.00, 0.00),

d3(X) = (1.00, 0.00, 0.00, 1.00, 1.00, 0.00),

d4(X) = (1.00, 0.00, 0.00, 1.00, 0.50, 0.00),

d5(X) = (1.00, 0.00, 0.00, 1.00, 0.50, 0.00),

d6(X) = (1.00, 0.00, 0.00, 1.00, 0.50, 0.00).

As a result, the GWLP values for X are not ordered, so X is not in canonical

form for the delete-one-factor ordering. We conclude that the delete-one-factor

ordering is not stable under column extensions. N

2.3 Minimum complete set algorithm

In this section, we present two algorithms to generate a minimum complete set

for OA(N ; sk; t). The first algorithm is given in Algorithm 2. This algorithm

is based on the LMC normal form and was introduced in [11]. In practice, it

is not necessary to generate all the extensions in step 2a of Algorithm 2. The

10

requirement for the algorithm to work is that the generated set of extensions

contains, for each isomorphism class in OA(N ; sj+1; t), the canonical form. We

can use the methods described in [11] to reduce the number of extensions. For

example, when extending an array with k columns we can let the algorithm

generate only extension columns which are lexicographically larger than column

the last column of the array. All extension columns which are lexicographically

smaller than the last column can be discarded since these columns will not

produce arrays in canonical form.

LMC Minimal Complete Set algorithm

Input: Specification of N , t, s and k.
Output: Minimal complete set for OA(N ; sk; t).

1. Start with the root array of OA(N ; st; t). The root forms a MCS for
OA(N ; st; t).

2. For j = t, . . . , k − 1 extend the MCS for OA(N ; sj ; t) to a MCS for
OA(N ; sj+1; t) using the following procedure:

(a) For each array, create all possible extensions to j + 1 columns.

(b) For all extensions, check whether the array is in LMC form

(c) Discard the arrays not in LMC form. The remaining arrays
form a MCS for OA(N ; sj+1; t).

Algorithm 2: The LMC MCS algorithm

A second algorithm to generate a MCS is specified in Algorithm 3. This algo-

rithm generates the MCS with representatives in the delete-one-factor canonical

form.

For this algorithm we can use some of the methods described in [11] to reduce

the number of arrays that has to be generated. The requirement is that, for

each isomorphism class, there is at least one representative array within the set

of generated arrays. A method we cannot use to reduce the generation of arrays

is to discard the extension columns which are lexicographically smaller then the

previous column. The reason for this is that the delete-one-factor normal form

is not stable under columns extensions.

A crucial difference between Algorithm 2 and Algorithm 3 is that, in Algo-

11

Delete-one-factor Minimal Complete Set algorithm

Input: Specification of N , t, s and k.
Output: Minimal complete set for OA(N ; sk; t).

1. Start with the root array of OA(N ; st; t). The root forms a MCS for
OA(N ; st; t).

2. For j = t, . . . , k − 1 extend the MCS for OA(N ; sj ; t) to a MCS for
OA(N ; sj+1; t) using the following procedure:

(a) For each array, create all possible extensions to j + 1 columns.

(b) For all extensions, reduce the array to delete-one-factor normal
form using Algorithm 1.

(c) From the resulting set of arrays only keep the unique elements.
The set of unique arrays forms a MCS for OA(N ; sj+1; t).

Algorithm 3: The delete-one-factor MCS algorithm

rithm 2, we can check whether the generated arrays are in canonical form, but,

in Algorithm 3, we have to reduce the arrays to canonical form. The reason

we can use the check in Algorithm 2 is that the LMC canonical form is stable

under column extensions.

The algorithm can be extended to non-symmetric arrays. For non-symmetric

arrays, we can use the definitions from [14] to define the GWLPs. We refer to

Appendix A for details.

3 Results

The methods described in the previous section have been implemented in C++

with a command line as well as a Python interface. The code for analyzing arrays

is contained in the Orthogonal Array package [5] and is available online [4].

Example code to analyse some of the arrays is included in Appendix B. We

compare two applications of both methods:

• Reduction of an array to normal form.

• Generation of a MCS for a certain class of arrays.

12

3.1 Reduction to canonical form

The cases for which the delete-one-factor method works well, are the cases for

which the delete-one-factor GWLPs have a large variation. If the GWLPs are

all equal, then the GWLPs impose no additional constraints on the ordering of

the columns of the array and the ordering reduces to the LMC ordering.

We consider the cases OA(32; 2a; 3) and OA(40; 2a; 3). First we consider the

reduction of arrays in this class to canonical form. We do this by taking a rep-

resentative for each isomorphism class in OA(N ; 2a; 3), for various a, applying

a random transformation of the rows, columns, and levels to this representative

and then measuring the time needed for reducing the array to canonical form.

The procedure is performed several times to eliminate the effect of the random

component. The results for reduction of a randomized array to canonical form

are given in Table 1 and Table 2.

From the tables it is clear that the delete-one-factor method performs better

in all cases. The improvement is relatively larger number for a higher number

columns. The reason is that for a larger number of columns the delete-one-

factor projection values have enough variation to reduce the number of column

permutations. In Table 3, the structure of the delete-one-factor GWLP groups

is shown for OA(32; 29; 3). The symmetry groups have been calculated with the

Orthogonal Array package (see Appendix B for an example calculation). It is

clear that for most arrays there is enough structure in the group to reduce the

number of column permutations that have to be analysed. The average size of

the column permutation groups is 63611, which is about 18% of the full column

permutation group size which is 9! = 362880.

Example 3 (Column permutations in normal form reduction). Let X be the

array in OA(32; 29; 3) defined by

13

X =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1
0 0 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 0 0 0 1 1
0 1 0 1 0 1 0 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 1 0 1 0 1 0 1
0 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 1 0 0 1 0 1



T

.

The GWLPs of the delete-one-factor projections are:

Deleted column GWLP

1 d1(X) = (1.0, 0.0, 0.0, 0.0, 5.0, 0.0, 2.0, 0.0, 0.0)

2 d2(X) = (1.0, 0.0, 0.0, 0.0, 5.0, 0.0, 2.0, 0.0, 0.0)

3 d3(X) = (1.0, 0.0, 0.0, 0.0, 5.25, 0.0, 1.5, 0.0, 0.25)

4 d4(X) = (1.0, 0.0, 0.0, 0.0, 5.25, 0.0, 1.5, 0.0, 0.25)

5 d5(X) = (1.0, 0.0, 0.0, 0.0, 5.25, 0.0, 1.5, 0.0, 0.25)

6 d6(X) = (1.0, 0.0, 0.0, 0.0, 5.25, 0.0, 1.5, 0.0, 0.25)

7 d7(X) = (1.0, 0.0, 0.0, 0.0, 6.0, 0.0, 1.0, 0.0, 0.0)

8 d8(X) = (1.0, 0.0, 0.0, 0.0, 6.0, 0.0, 1.0, 0.0, 0.0)

9 d9(X) = (1.0, 0.0, 0.0, 0.0, 7.0, 0.0, 0.0, 0.0, 0.0)

The structure of the column permutation group is [2, 4, 2, 1].

The array is from OA(32; 29; 3), but after calculation of the delete-one-factor

projection values we can consider the array to be an element of OA(32; 22242221; 3).

With a naive algorithm for reduction to canonical form, the number of column

permutations that has be checked is 9! = 362880. With the LMC algorithm

from [11] the columns are selected one at a time and the tree is pruned as soon

as possible. For the first 3 columns there is no pruning, since there is no struc-

ture because of the strength of 3. Most column permutations can be discarded

at the fourth of fifth column. A rough estimate of the number of column per-

mutation to be checked is 5!
(
9
5

)
= 15120. If we consider the delete-one-factor

projection values, the number of column permutations to be checked is reduced

14

Case Number of classes Reduction time LMC Reduction time DOP

OA(32, 3, 26) 10 6.2 [ms] 4.3 [ms]
OA(32, 3, 27) 17 6.5 [ms] 3.6 [ms]
OA(32, 3, 28) 33 11.5 [ms] 8.3 [ms]
OA(32, 3, 29) 34 17.3 [ms] 11.4 [ms]
OA(32, 3, 210) 32 43.6 [ms] 26.0 [ms]
OA(32, 3, 211) 22 86.9 [ms] 28.9 [ms]
OA(32, 3, 212) 23 210.5 [ms] 166.4 [ms]
OA(32, 3, 213) 12 444.5 [ms] 347.2 [ms]

Table 1: Mean calculation times for reducing randomized arrays to normal form.

Case Number of classes Reduction time LMC Reduction time DOP

OA(40, 3, 27) 25 4.3 [ms] 1.5 [ms]
OA(40, 3, 28) 105 5.5 [ms] 2.3 [ms]
OA(40, 3, 29) 213 7.6 [ms] 2.0 [ms]
OA(40, 3, 210) 353 12.9 [ms] 3.4 [ms]
OA(40, 3, 211) 260 22.8 [ms] 1.6 [ms]
OA(40, 3, 212) 235 40.6 [ms] 9.1 [ms]
OA(40, 3, 213) 132 72.3 [ms] 8.3 [ms]
OA(40, 3, 214) 96 153.9 [ms] 13.1 [ms]
OA(40, 3, 215) 36 324.9 [ms] 23.7 [ms]

Table 2: Mean calculation times for reducing randomized arrays to normal form.

even further. The first two columns are the columns with lowest GWLP value.

There are precisely 2! possible permutations for these first 2 columns. For the

next 4 columns we have 4! combinations, etc. In total we have 2!4!2!1! = 96

column permutations that have to be checked. N

The running time of the algorithm is to a large extent determined by the

number of column permutations that has to be checked. For the class OA(40; 2a; 3)

a rough estimate of the number of column permutations to be checked with the

LMC ordering is 5!
(
n
5

)
. A graph of this complexity together with the compu-

tation times per array for the LMC and the delete-one-factor method is given

in Figure 1. The complexity estimate is scaled such that the mean complexity

and mean computation time of the LMC method are equal. We can see that

the computing times for the LMC method scale with the number of columns

roughly as the complexity estimate.

15

Array index Group structure Group size
0 [8, 1] 40320
1 [6, 1, 2] 1440
2 [3, 4, 2] 288
3 [7, 2] 10080
4 [6, 2, 1] 1440
5 [8, 1] 40320
6 [5, 1, 2, 1] 240
7 [2, 4, 2, 1] 96
8 [6, 2, 1] 1440
9 [4, 1, 4] 576
10 [5, 2, 2] 480
11 [5, 2, 2] 480
12 [6, 2, 1] 1440
13 [8, 1] 40320
14 [3, 2, 4] 288
15 [9] 362880
16 [9] 362880
17 [9] 362880
18 [4, 3, 1, 1] 144
19 [8, 1] 40320
20 [4, 1, 4] 576
21 [4, 2, 2, 1] 96
22 [4, 2, 2, 1] 96
23 [3, 4, 1, 1] 144
24 [4, 4, 1] 576
25 [4, 4, 1] 576
26 [8, 1] 40320
27 [3, 2, 4] 288
28 [9] 362880
29 [9] 362880
30 [7, 1, 1] 5040
31 [8, 1] 40320
32 [8, 1] 40320
33 [8, 1] 40320

Table 3: Structure of delete-one-factor symmetry group for the arrays in
OA(32, 3, 29). The mean column permutation group size is 63611.3.

16

Figure 1: Mean reduction time per array.

3.2 Extension results

Recall that the methods to determine all isomorphism classes in OA(N ; 2a; t)

are based on two steps:

• Extension Generate a set of arrays that includes at least one representa-

tive for each isomorphism class.

• Reduction Reduce the set of arrays so that each class has only one rep-

resentative.

In this section we compare two such methods. The first method (Algorithm 2)

is the method from [11]), the second method (Algorithm 3) is similar to the first,

but uses the new canonical form described in Section 2.2. The running times of

both algorithms depend on both the extension and reduction part. The ratio

between these part can differ between different classes of orthogonal arrays.

For the delete-one-factor method we have implemented one additional step to

increase the computation speed. For each extension Y of an array X generated,

17

the delete-one-factor GWLPs dj(Y) are calculated, and, for an array in delete-

one-factor canonical form these values are decreasing. If we find an extension

for which the final column k satisfies dk(Y) > dk−1(Y), then we can discard

this array. The reason is that the array will be generated also as an extension of

the canonical form of the array πj(X) as well. The canonical form of the array

πj(X) is not equal to Y (since they have different GWLPs). Since we only need

to generate at least one representative for each isomorphism class, discarding

the array Y does not influence the MCS generated.

The results for extension of the classes OA(32; 29; 3) and OA(40; 29; 3) with

one additional factor are given in Table 4 and Table 3.2. The delete-one-factor

method generates more arrays to be checked. This results in a higher compu-

tation time.

LMC method DOP method
input arrays 34 34
generated extensions 217 292
reduced extensions 32 32
Processing time 0.9 [s] 5.1 [s]

Table 4: Results for extension of OA(32; 29; 3) to OA(32; 210; 3).

LMC method DOP method
input arrays 213 213
generated extensions 1844 3105
reduced extensions 353 353
Processing time 3.5 [s] 4.8 [s]

Table 5: Results for extension of OA(40; 29; 3) to OA(40; 210; 3).

4 Discussion

Experiments show that with the new delete-one-factor ordering a reduction

to canonical form can be performed much faster than with the lexicographic

ordering. However, this new ordering does not work well with the current state-

of-the-art extension algorithms. In the extension phase much more arrays are

18

generated, so the overall calculation is not faster than the original lexicographic

ordering.

One method to reduce the running time of the new algorithm is to reduce

the number of arrays that is generated during the extension phase. However,

the number of arrays generated in the extension phase is always at least as large

as the number of isomorphism classes. Therefore the number of isomorphism

classes to be generated provides a lower bound on the calculation time that can

be achieved when reducing the number of arrays generated.

A second way would be to modify the new canonical form and make it

stable under extension of the arrays. The new ordering is defined in terms of

the delete-one-factor projections and each individual projection depends on the

entire array. The author has not found any new ordering that is stable and at

the same time efficient to calculate.

Our method is applicable to non-symmetric arrays. However, for non-

symmetric arrays columns permutations between columns with a different num-

ber of levels are not possible. So, the advantages of the delete-one-factor method

for non-symmetric arrays are smaller.

5 Acknowledgements

The author would like to thank Eric Schoen and Peter Goos for reviewing the

paper.

References

[1] D. Bulutoglu and F. Margot. Classification of orthogonal arrays by integer

programming. Journal of Statistical Planning and Inference, 138:654–666,

2008.

19

[2] J. Chen, D. Sun, and C. Wu. A catalogue of two-level and three-level

fractional factorial designs with small runs. International Statistical Review,

61:131–145, 1993.

[3] L. Deng and B. Tang. Generalized resolution and minimum aberration cri-

teria for plackett-burman and other nonregular factorial designs. Statistica

Sinica, 9:1071–1082, 1999.

[4] P. T. Eendebak. Orthogonal array page, 2012. http://www.

pietereendebak.nl/oapage/.

[5] P. T. Eendebak. The Orthogonal Array package. Technical report, 2013.

[6] A. Hedayat, N. Sloane, and J. Stufken. Orthogonal arrays : theory and

applications. Springer, 1999.

[7] B. McKay. Practical graph isomorphism. Congressus Numerantium, 30:45–

87, 1981.

[8] B. D. McKay and A. Piperno. Practical graph isomorphism, ii. CoRR,

abs/1301.1493, 2013.

[9] C. Rao. Factorial experiments derivable from combinatorial arrangements

of arrays. Journal of the Royal Statistical Society Supplement, 9:128–139,

1947.

[10] K. J. Ryan and D. A. Bulutoglu. Minimum aberration fractional factorial

designs with large n. Technometrics, 52(2):250–255, 2010.

[11] E. D. Schoen, P. T. Eendebak, and M. V. M. Nguyen. Complete enumera-

tion of pure-level and mixed-level orthogonal arrays. Journal of Combina-

torial Designs, 18(2):123–140, 2010.

[12] D. Sun, W. Li, and K. Ye. An algorithm for sequentially constructing

nonisomorphic orthogonal designs and its applications. Technical report,

Department of Applied Mathematics and Statistics, SUNY at Stony Brook,

2002.

20

http://www.pietereendebak.nl/oapage/
http://www.pietereendebak.nl/oapage/

[13] H. Xu. Algorithmic construction of efficient fractional factorial designs with

large run sizes, 2009.

[14] H. Xu and C. F. J. Wu. Generalized minimum aberration for asymmetrical

fractional factorial designs. Annals of Statistics, 29:1066–1077, 2001.

A Extension to non-symmetric arrays

The theory in this paper can be extended to include non-symmetric arrays.

First we extend the definitions of the distance distribution and GWLPs to non-

symmetric arrays. Then we define an ordering on non-symmetric arrays. The

rest of the theory is the same as for symmetric arrays.

Let s = (s1, . . . , sl) with si ≥ 2 and si 6= sj for i 6= j. Let n = (n1, . . . , nl)

with ni ≥ 1,
∑l
i=1 ni = k. We use sn as a shorthand for sn1

1 sn2
2 · · · slnl . For the

non-symmetric arrays in OA(N ; sn; t) we use the following definitions.

Definition 8 (Distance distribution). Let D be in OA(N ; sn; t). Every row

a ∈ D is split as a = (a1, . . . , al). For j = (j1, . . . , jl) ∈ Zn1
× · · ·Znl

we define

Bj(D) = Bj1,j2,...,jl(D)

= N−1|{(a, b) : dH(ai, bi) = ji for i = 1, . . . , l, a ∈ D, b ∈ D}|.

The MacWilliams transforms of the distance distribution are defined as

B′j(D) = N−1
n1∑
i1=0

n2∑
i2=0

· · ·
nl∑
il=0

Bi(D)Pj1(i1;n1, s1)Pj2(i2;n2, s2) · · ·Pjl(il;nl, sl)

where Pj(x; k, s) =
∑j
i=0(−1)i(s − 1)j−i

(
x
i

)(
k−x
j−i
)

are the Krawtchouk polyno-

mials.

Definition 9 (Generalized Wordlength Pattern). For an (N, sn)-design D, the

generalized wordlength pattern of D is equal to A(D) = (A0(D), . . . , Ak(D))

21

with k =
∑
i ni and

Aι(D) =
∑

j1+j2+...=ι

B′j1,...,jl(D).

Example 4. Let s = (4, 2), n = (2, 1). Let D be the orthogonal array in

OA(16; 422; 2) defined by

D =



0 0 0

0 1 0

0 2 1

0 3 1

1 0 0

1 1 0

1 2 1

1 3 1

2 0 1

2 1 1

2 2 0

2 3 0

3 0 1

3 1 1

3 2 0

3 3 0



.

Then the distance distribution of D is given by (see Definition 8)

B(0,0)(D) = 1, B(1,0)(D) = 2, B(2,0)(D) = 5,

B(0,1)(D) = 0, B(1,1)(D) = 4, B(2,1)(D) = 4.

The GWLP is given by A(D) = (1.0, 0.0, 0.0, 1.0). N

The delete-one-factor projections of a non-symmetric array cannot be com-

22

pared directly since not all columns have the same number of factor levels. We

therefore introduce an ordering that compares the columns only if the column

levels are identical. For columns with identical column levels we still use the

GWLPs to compare.

Definition 10 (Delete-one-factor ordering for non-symmetric arrays). Let D

be in OA(N ; sn; t). For each column k we define the mixed projection value

dM,k(D) to be the tuple defined by the factor level of column k and the GWLP

of the array obtained by deleting column k, so

dM,k(D) = (−sk, dk(D)).

We order the mixed projection values by the usual lexicographic ordering.

Let X and Y be two non-symmetric N×n arrays. We define X to be smaller

than Y in the delete-one-factor ordering if there is an l such that dM,j(X) =

dM,j(Y) for j = 1, . . . , l − 1 and dM,l(X) < dM,l(Y) or dM,j(X) = dM,j(Y) for

j = 1, . . . , n and X is lexicographically smaller than Y .

The definition of dM,k(D) contains a minus sign in front of the factor level

to make sure that the arrays in canonical form start with the columns with the

highest factor levels. For symmetric arrays the ordering defined above corre-

sponds to the original ordering since all levels si are equal.

B Example code

In this section, we give an example of the usage of the Orthogonal Array pack-

age [5] to analyse arrays. We calculate the GWLPs of the delete-one-factor

arrays and calculate the associated symmetry group.

23

Example 1: canonical form of an array

>>> import oalib

>>> al=oalib.exampleArray(4)

>>> al=oalib.reduceDOPform(al)

>>> al.showarray()

array:

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 1 1 1 0

0 0 0 1 1 1 1

0 1 1 0 0 1 0

0 1 1 0 0 1 1

0 1 1 1 1 0 0

0 1 1 1 1 0 1

1 0 1 0 1 0 0

1 0 1 0 1 1 1

1 0 1 1 0 0 0

1 0 1 1 0 1 1

1 1 0 0 1 0 1

1 1 0 0 1 1 0

1 1 0 1 0 0 1

1 1 0 1 0 1 0

>>> print(’GWLP %s’ % str(al.GWLP()))

GWLP (1.0, 0.0, 0.0, 3.5, 2.5, 0.5, 0.5, 0.0)

>>> for ii in range(0, al.n_columns):

... bl=al.deleteColumn(ii)

... print(’dof %d: GWLP %s’ % (ii, str(bl.GWLP())))

dof 0: GWLP (1.0, 0.0, 0.0, 1.5, 1.0, 0.5, 0.0)

dof 1: GWLP (1.0, 0.0, 0.0, 1.75, 0.75, 0.25, 0.25)

dof 2: GWLP (1.0, 0.0, 0.0, 1.75, 0.75, 0.25, 0.25)

dof 3: GWLP (1.0, 0.0, 0.0, 2.0, 1.0, 0.0, 0.0)

dof 4: GWLP (1.0, 0.0, 0.0, 2.0, 1.0, 0.0, 0.0)

dof 5: GWLP (1.0, 0.0, 0.0, 2.0, 1.0, 0.0, 0.0)

dof 6: GWLP (1.0, 0.0, 0.0, 3.0, 2.0, 0.0, 0.0)

>>> dopgwp = oalib.projectionGWLPvalues (al)

>>> sg=oalib.symmetry_group(dopgwp, 0)

>>> sg.show(1)

symmetry group: 7 elements, 4 subgroups: 1 2 3 1

24

	Introduction
	Method
	Preliminaries
	Canonical form
	Minimum complete set algorithm

	Results
	Reduction to canonical form
	Extension results

	Discussion
	Acknowledgements
	Bibliography
	Extension to non-symmetric arrays
	Example code

