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Abstract 
 

Action recognition is a hard problem due to the many 

degrees of freedom of the human body and the movement 

of its limbs. This is especially hard when only one camera 

viewpoint is available and when actions involve subtle 

movements. For instance, when looked from the side, 

checking one’s watch may look very similar to crossing 

one’s arms. In this paper, we investigate how much the 

recognition can be improved when multiple views are 

available. The novelty is that we explore various 

combination schemes within the robust and simple bag-of-

words (BoW) framework, from early fusion of features to 

late fusion of multiple classifiers. In new experiments on 

the publicly available IXMAS dataset, we learn that action 

recognition can be improved significantly already by only 

adding one viewpoint. We demonstrate that the state-of-

the-art on this dataset can be improved by 5% - achieving 

96.4% accuracy - when multiple views are combined. 

Cross-view invariance of the BoW pipeline can be 

improved by 32% with  intermediate-level fusion. 

 

1. Introduction 

Recognizing human actions is a critical aspect of many 

types of surveillance, ranging from the security of a 

business park, to monitoring of patients in a hospital, to 

surveillance in a public space such as a railway station. 

Human actions can be indicative of a wide range of 

unwanted situations such as aggression, vandalism, theft, 

somebody falling, and becoming unwell. Recognizing 

actions is an active field of research [1-4] and promising 

results have been shown on explicit actions such as 

aggression detection [5], simple kinematic actions such as 

walk, bend and jump [6,7] and sports [8]. More complex 

actions that involve subtle motions, for instance give and 

put down, are still not yet well recognized [9].  

An obvious way to improve the action recognition 

accuracy is to increase the number of viewpoints on the 

action, such that more details about the action are visible. 

Two categories of multi-view recognition systems can be 

distinguished [10]: combination of multiple 2D views, e.g. 

[11-14], and, 3D, e.g. [15,16], where there is a common 

reference frame between the viewpoints. A hybrid 

approach is presented in [17] where the learning is in 3D 

and during recognition time the 2D view is sufficient. The 

use of multiple 2D views without full 3D modeling is to 

be preferred if the person of interest may be partly 

occluded, or when the camera setup is not known 

beforehand. For a different camera setup, new calibration 

and learning is required. In surveillance applications, it is 

commonly not possible to fully control the camera setup. 

Therefore, we consider multi-view action recognition by 

combining 2D views. 

Various methods have combined 2D views at a single 

level. An early fusion strategy for combination of 

viewpoints is to combine the low-level features [12]. An 

intermediate level fusion strategy is to concatenate the 

representations from different viewpoints [11]. Another 

strategy is to train on all instances obtained from various 

viewpoints, and test on a new viewpoint [13]. Late fusion 

can be performed by combining single-view classifiers. In 

[14] the silhouettes from each view are classified first by a 

random forest, and subsequently fusion is performed on 

the classifier level. A systematic evaluation of the benefits 

of early to late fusion has not been performed. This paper 

compares the action recognition accuracy when multiple 

2D views are combined at the feature, representation or 

classifier level.  

The bag-of-words (BoW) model, based on low-level 

motion features, is a simple model that has achieved good 

performance on a range of action recognition tasks [4-

7,9,11]. Due to its simplicity, performance and generality, 

we consider this model as our basic pipeline, where we 

use STIP features [18] because they proved to be robust 

features for describing actions [4,5,9]. In the BoW 

framework, fusion of multiple 2D views can be performed 

on the feature level, histogram level and classifier level. 

We evaluate the performance of these fusion schemes and 

compare them against the state-of-the-art on the multi-

view IXMAS dataset of 12 human actions recorded by 5 

cameras (4 side and 1 top view) [17].  

Recently, view-invariance was tested on the IXMAS 

dataset [26-28]. The proposed methods are based on 

correlation subspaces [27], latent kernelized structural 

SVM [28] and temporal self-similarities [26]. These 

methods give better cross-camera results, but their 
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performance on the 4 side views is less than ours. This is 

noteworthy, because in surveillance the camera viewpoint 

is often sideways. 

Previous experiments on this dataset have shown the 

merit of adding additional cameras [10,11,14]. In these 

works, there was no particular rationale for selecting the 

subsets of cameras. For surveillance systems, a key design 

issue is to properly select the number of cameras and place 

them such that the distinctive details about humans and 

their actions are visible. 

In our experiments, we assess systematically the merit 

of each camera by analyzing the performance of pairs of 

cameras under 45º, 90º and 135º. Our experiments lead to 

insights on appropriate camera setups for human action 

recognition. Furthermore, we do cross-view analysis to 

assess the camera invariance of the fusion methods.  

The paper is organized as follows. In Section 2 we 

propose the seven fusion schemes to combine the multiple 

2D views. Section 3 is about the same-view experiments, 

where we establish the performance of the combiners, 

compare to state-of-the-art, and assess the merit of 

multiple cameras and their viewing angles. Section 4 

shows the cross-view experiments, and finally, Section 5 

concludes with the main findings. 

2. Multi-View Combination Schemes 

In Section 2.1 we discuss the bag-of-words model for 

action detection and in Section 2.2 we propose its 

extensions to combine multiple 2D views. 

2.1. Bag-of-Words Action Detectors 

We used a bag-of-word (BoW) [19] pipeline consisting 

of STIP features to capture motion, a random forest to 

quantize the features into histograms, and an SVM 

classifier that serves as action detector. The STIP features 

are extracted with Laptev’s code (v.1.0) and the default 

parameters [18]. The descriptor of 162 values is obtained 

by concatenation of all HOG and HOF features. STIPs 

appeared to be superior to local or bounding-box features 

[20,21]. The next step is to construct a representation of a 

video segment with a random forest, which is obtained 

with Breiman’s code [22] with the randomness-parameter 

M set to all 162 features. Each forest contains 10 trees 

with 32 leafs, resulting in a 320-bin histogram that is 

normalized to unity. The final step is classification with an 

SVM. We use the libSVM code [23]. For each action, a 

separate SVM is obtained and a test sample is assigned to 

the action of which the SVM’s output (i.e. the posterior 

probability) is maximal [24]. The SVM is trained using a 

χ
2
 kernel (C=1), and the weight of the positive class (i.e. 

samples of a particular action) is set to (#pos+#neg)/#pos 

and the weight of the negative class (i.e. samples without 

this action) to (#pos+#neg)/#neg, where #pos and #neg are 

the amount of  positive and negative samples [19]. 

2.2. Multiple 2D Views 

In the BoW framework, the multiple 2D views can be 

combined in several ways. The STIP features can be 

collected from all cameras, and transformed into a single 

histogram, i.e. early fusion (feature level).  

The features at each camera can be transformed into a 

view-specific BoW histogram, after which there are two 

alternatives for combination. The first histogram combiner 

is to collect the set of histograms and thereby obtaining 

more training samples. The second histogram combiner is 

to concatenate the histograms and thereby obtaining 

longer and richer training samples. We call both 

alternatives intermediate level fusion.  

Late fusion can be performed on the classifier level, 

after each action-specific SVM has produced its posterior 

probability. Recall from Section 2.1 that we have one 

SVM per view vi and per action aj. This gives I·J SVMs in 

total for I views and J actions, each produces a posterior 

probability. We distinguish between four types of late 

fusion. The first type assigns to the current sample the 

action that maximizes the average posterior over the I 

SVMs. The second type is similar, but assigns to the 

action that has the maximum posterior from all I·J SVMs. 

The third type [25] is to learn on the train set the optimal 

view per action. During testing, the optimal views for all 

actions are known. For each action, one posterior is 

obtained by selecting its optimal view vi. The sample is 

assigned to the action that has the maximum posterior 

probability. The fourth type is an adaptation from [21], 

where a second-stage SVM is introduced that takes all 

posteriors from all I·J SVMs as input values and trains a 

mapping from those values to action aj. Its input values are 

all between 0 and 1, and they are no histograms. For these 

inputs, the Euclidean distance proved to work best [21]. 

Given the outputs of the second-stage SVMs for each 

action, the sample is assigned to the action that has the 

maximum posterior probability.  
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Figure 1: Our BoW framework (Section 2.1) and the proposed 

extensions for early, intermediate and late fusion, at resp. the 

feature (STIPs), representation (RF-histograms) and classifier 

(SVM) levels (Section 2.2). 
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All early, intermediate and late fusion processing 

pipelines are indicated in Figure 1. Their naming – to 

which we will refer in the experiments (Section 3) – and 

their characteristics are summarized in Table 1. 

 

Fusion Combiner Characteristic 

Early STIPs more features  

in histogram 

Intermediate set of RF 

histograms 

more histograms 

Intermediate concatenation of  

RF histograms 

longer 

histograms 

Late average vote across all views 

Late max. vote across all views 

Late best view learned best 

view per action 

Late 2
nd

 stage SVM classifier on  

posteriors  

across views 
Table 1: The proposed fusion methods to combine the 2D views 

(Section 2.2). We distinguish early (STIP features), intermediate 

(RF histograms) and late fusion ( posterior probabilities).  

3. Action Recognition Experiments 

The experiments are performed on the IXMAS dataset 

[17] and we evaluate the performance of the combination 

schemes from Section 3 and – for the best combiner – we 

establish the added value of adding multiple camera 

viewpoints. The performance is compared to state-of-the-

art. 

3.1. IXMAS dataset 

The IXMAS dataset [17] consists of 12 complete action 

classes with each action executed three times by 12 

subjects and recorded by five cameras with the frame size 

of 390 × 291 pixels. These actions are: check watch, cross 

arms, scratch head, sit down, get up, turn around, walk, 

wave, punch, kick, point and pick up. The body position 

and orientation are freely decided by different subjects.  

In the experiments, we refer to the following camera 

viewpoints, numbered from 1-4, see Figure 2. We do not 

include camera 5 because its view is from above and for 

security camera networks this is not common. 

 

 
Figure 2: The viewpoints from cameras 1-4 of the IXMAS 

dataset.  

3.2. Measure of Performance 

The standard setup on the IXMAS dataset is leave-one-

actor-out cross validation, which we also used. For each 

experiment, a new random forest is generated. The 

classification accuracy and the confusion matrix are the 

performance measures. The best performance to date on 

this dataset is 98.8%, achieved by the Stieffel manifold 

kernel, using 3D information [16]. The best performing 

method that is based on four 2D side-views is latent 

kernelized SVM [28], achieving 91.7%. 

3.3. Performance of the 2D View Combiners 

We evaluate all fusion methods from Section 2.2against 

a single-view setup (Table 2). The best performing multi-

view combination schemes are the posterior average 

voting  and RF histogram concatenation. Surprisingly, 

these methods perform significantly better than the 

combination of all STIP features from all viewpoints. 

Apparently it is advantageous to represent STIP features 

from each view by a view-specific optimized bag-of-

words model first, rather than making the model after 

collecting all the STIP features. We hypothesize that each 

view has a distinct influence on the way that the human 

and action are perceived and that it is easier to generalize 

feature representations at the view level than across the 

views. For the same reason, learning a single action 

recognizer at once from the representations from all views 

together does not work well. In summary, the methods that 

combine the multiple views after the representation work 

best. 

 

Fusion Combiner Acc. 

None n/a (single view) 87.9 

Early STIPs 88.6 

Interm. set of RF histograms 81.4 

Interm. concatenation of RF histograms 95.3 

Late average vote 96.4 

Late max. vote 92.2 

Late best view 90.0 

Late 2
nd

 stage SVM 94.4 
Table 2: Performance of the 2D view combiners compared to 

average result over the single-view setup per camera. 

 

To understand why histogram concatenation achieves a 

significant improvement over the single-view setup, we 

analyze the confusion matrices. Confusions by the single-

view setup are displayed in Figure 3 (left) so they can be 

compared to the confusions by the multi-view histogram 

concatenation (right). We mention confusions larger than 

5% of the test samples. The hard cases in the single-view 

setup are: check watch (confused with cross arms), cross 

arms (confused with check watch and scratch head), 

scratch head (confused with cross arms), punch (confused 

with kick and wave).  



 

AVSS 2013 

253 
 

 
The confusions make sense: the actions are visually 

very similar, especially when the action is partly occluded 

(e.g. cross arms viewed from the back and from the side 

will show only one arm which may look like check 

watch). In the single-view case, there are 7 confusions 

larger than 5% of which 5 confusions are larger than 10%. 

For the multi-view case, there are only 4 significant 

confusions, which are a subset of the single-view 

confusions: check watch (cross arms), cross arms (scratch 

head and check watch) and kick (point). None of the 

actions have a confusion that is larger than 10%. We 

conclude that the multiple views on an action 

disambiguate it from visually similar but different actions. 

3.4. Comparison to State-of-the-Art 

Our best fusion methods are the RF histogram 

concatenation and posterior average voting. They 

outperform significantly the state-of-the-art method 

AFMKL [11] and latent kernelized SVM [28] on the four 

2D side views of IXMAS, by a relative improvement of 

8.2% and 4.7% resp. (see Table 3). Our method uses 

multiple 2D views and interestingly our performance 

approaches the best 3D method on this dataset, the 

Manifold Kernel [16] and the Latent kernel on 5 views 

[28], which are still resp. 2.4% and 0.7% better. 

 

Method Acc. 

AFMKL, Wu et al. 2011 [11] 88.2 

Latent kernel SVM, Wu e.a.. 2012 [28] 91.7 

Our intermediate RF concatenation 95.3 

Our late posterior average-vote  96.4 
Table 3: Comparison of our best 2D view combiner to the best 

methods on IXMAS that use multiple 2D views or full 3D. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5. Best Combiners: From One to Four Views 

We are interested in how the performance of our best 

fusion method improves when cameras are added. Table 4 

shows the accuracies for incrementally adding cameras. 

Note that the average accuracy were reported over all 

combinations of 4 separate cameras, 6 camera pairs and 4 

camera triplets.  Adding the second camera improves the 

action recognition for RF histogram concatenation 

accuracy most, a relative improvement of 6.3%, where the 

third and fourth camera add on average only 1.7%. Note 

that the standard deviation over the different pairs and 

triples is much smaller for histogram concatenation than 

for average voting. 

 

#Cams Cameras Acc: interm. 

RF concat. 

Acc: late 

av. vote 

1 4 x separate 87.9 87.9 

2 6 x pairs 92.5 ± 0.5 91.5 ± 2.4 

3 4 x triplets 94.4 ± 0.3 91.3 ± 3.0 

4 1 x all 95.3 96.4 
Table 4: Average accuracies of action recognition. The results 

show an improvement when multiple 2D views are used. RF 

histogram concatenation and late average voting were used for 

fusion. 

 

 To understand which camera setup is to be preferred if 

only two cameras are available, we have tested with pairs 

of cameras that are 45º, 90º and 135º apart. Table 5 

summarizes the findings. The performance of all setups is 

similar, yet the combinations of cameras at 90º are slightly 

better. 

 

Figure 3: Confusions by our RF histogram concatenation method between the 12 human actions from IXMAS.  
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Orient. Cameras Acc. interm. 

RF concat. 

Acc. late 

av. vote 

45º pair [1,2], [2,3], 

[3,4] 

92.4 ± 0.2 90.4 ± 3.1 

90º pair [1,3], [2,4] 92.8 ± 1.0 93.0 ± 0.8 

135º pair [1,4] 92.1 91.7  
Table 5: Comparison of setups with 2 cameras under various 

relative orientations. RF histogram concatenation and late 

average voting were used. 

 

4. Camera invariance experiments 

The results from the previous sections have been 

obtained by training and evaluating on the same camera. 

In applications it is not always feasible to train on a given 

camera. For example in a large camera surveillance 

network we might want to train on a couple of 

representative cameras, and then use the trained classifiers 

on other cameras. For fair comparison with existing state-

of-the-art, we show the camera invariance of our current 

pipeline. 

4.1. Single-view camera invariance 

We have tested single view camera invariance by 

training on a single camera, and evaluating on another 

camera. The cross-view analysis in Table 6 shows that the 

single-view method is not camera invariant, since the 

average performance decreases from 87.9 on the same 

camera to 50.9 on the other cameras (off-diagonal mean in 

Table 6). Note that the 2 cameras which are similar (e.g. 

camera 1 and 2) have a good score, and the cameras which 

are less similar have less good scores. 

 

 Eval 

cam1 

Eval 

cam2 

Eval 

cam3 

Eval 

cam4 

Train cam1 87.0 71.8 46.4 44.0 

Train cam2 67.4 87.8 41.1 53.6 

Train cam3 46.6 36.2 90.3 56.9 

Train cam4 47.4 50.2 48.8 86.6 

Table 6: Single-view cross-camera accuracies. 

4.2. Camera invariance for multi-view combiners 

We evaluate all fusion methods for camera invariance, 

where the method was trained on two cameras and 

evaluated on two other cameras. The concatenation of RF 

histograms fusion method is most camera invariant, with a 

relative improvement of 32% compared to the single-view 

pipeline (Table 7). However, the recently proposed Latent 

kernelized SVM [28] appears to be superior in the cross-

camera experiment (Table 8).  

 

Fusion Combiner Acc. 

None n/a 50.9 

Early STIPs 66.3 

Interm. set of RF histograms 60.5 

Interm. concatenation of RF histograms 67.3 

Late average vote 64.9 

Late max. vote 61.8 
Table 7: Multi-view cross-camera accuracies, with training on 

two cameras and evaluating on two other cameras (6 pairs). 

 

Method Acc. 

Self-similarities, Junejo e.a. [26] 71.6 

Correlated subspace, Huang e.a. 2012 [27] 61.5 

Latent kernel SVM, Wu e.a. 2012 [28] 83.3 

Our interm. concatenation of RF hist. 67.3 
Table 8: Cross-camera accuracies for the four side-view cameras. 

4.3. Best combiners: multi-view camera 

invariance 

The number of cameras used for training and evaluation 

can be varied. We extend the early STIP fusion and 

average voting to multiple cameras. Table 9 and 10 show 

that multiple cameras for training and evaluation result in 

a much better camera invariance than a single-view setup. 

The case with two training and two evaluation cameras 

appears to give the best performance. 

 

 1 other 

eval cam 

2 other 

eval cams 

3 other 

eval cams 

1 train cam 50.9 55.9 57.8 

2 train cams 57.5 66.3 n/a 

3 train cams 57.7 n/a n/a 

Table 9: Average accuracies using early-STIP fusion for 

different number of training and evaluation cameras. We used all 

permutations of cameras to compute the average accuracy 
 

 1 other 

eval cam 

2 other 

eval cams 

3 other 

eval cams 

1 train cam 50.9 57.8 60.7 

2 train cams 57.5 64.9 n/a 

3 train cams 61.3 n/a n/a 

Table 10: Average accuracies using posterior average voting for 

different number of training and evaluation cameras.  
 

Both tables  show that the camera invariance improves 

if we add more cameras. Adding more training cameras 

prevents overtraining and allows for better generalization. 

Adding more evaluation cameras gives more information, 

and therefore yields better results. Our best mixed camera 

method (the RF histogram concatenation) requires training 

and evaluation with the same number of cameras. 

Therefore Table 9 for this method would only make sense 

for the 2x2 combination as for the 3x3 combination not 

enough cameras are available. 
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5. Conclusions 

We have investigated how much action recognition can 

be improved when multiple views are available. Within 

the robust and simple bag-of-words (BoW) framework, we 

have considered various schemes to combine camera 

viewpoints. Early fusion involves the combination of the 

STIP features. Intermediate-level fusion combines the 

views after BoW histograms. Late fusion involves the 

combination of multiple classifiers, one for each 

viewpoint. In new experiments on the IXMAS dataset, we 

have learned that action recognition can be improved 

significantly already by only adding one viewpoint. 

Furthermore, we have demonstrated that the state-of-the-

art on the four side-views of this dataset can be improved 

by 5% – achieving 96.4% accuracy – when multiple views 

are combined by intermediate-level fusion of the BoW 

representations. 

The cross-view scores are significantly lower than 

scores on the same view. However, fusion methods such 

as BoW concatenation allows a relative improvement of 

32%. For many real-world applications the camera 

invariance of the method is an important topic to further 

study. Future work may include the combination of 

temporal self-similarities with our multi-view fusion. 
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